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ՆԱԽԱԲԱՆ 

  

Դասագրքի առաջին մասում (1 – 7 գլուխներ) բերված էին նմուշային 

մեթոդի նկարագրությունը և գնահատման տեսությունը: Երկրորդ մասը 

նվիրված է վիճակագրական վարկածների ստուգմանը և զույգային ու 

բազմաչափ գծային ռեգրեսիաներին վերաբերող հարցերին: 

 Դասագրքի երկրորդ մասի 8-րդ գլխում ներառված են վիճակագրա-

կան վարկածների ստուգմանը վերաբերող ընդհանուր գաղափարները: 

9-րդ գլուխը նվիրված է պարամետրական վարկածներին, որտեղ նե-

րառված են երկու պարզ վարկածների ստուգմանը վերաբերող Նեյման - 

Պիրսոնի ճշմարտանմանության հարաբերության հայտանիշը, բարդ 

վարկածների ստուգման խնդիրները, վարկածների ստուգման և միջա-

կայքային գնահատականների միջև կապը, երկու նմուշին վերաբերող 

բարդ վարկածների ստուգման խնդիրները: Այդ գլուխը եզրափակում է 

բարդ վարկածների ստուգման ճշմարտանմանության հարաբերության 

հայտանիշը՝ մի շարք կիրառական օրինակներով, որոնց թվում՝ նորմալ 

մոդելներին վերաբերող միագործոն ցրվածքների վերլուծությունը 

(ANOVA): 

10-րդ գլուխը նվիրված է ոչ պարամետրական վարկածներին: Դի-

տարկված են` համաձայնության, համասեռության, անկախության, պա-

տահականության հայտանիշները և կորելյացիայի գործակցի նշանակա-

լիությունը ստուգող հայտանիշը: 

Եզրափակիչ՝ 11-րդ և 12-րդ գլուխներում ներառված են զույգային և 

բազմաչափ գծային ռեգրեսիաներին վերաբերող հարցերը: Նշենք նաև, որ 

11-րդ և 12-րդ գլուխները «Տնտեսաչափություն» առարկայի հիմնական նե-

րածական մասն են: Այնպես որ, դասագիրքը կարող է օգտակար լինել 

ինչպես «Ակտուարական և ֆինանսական մաթեմատիկա», «Կիրառական 

վիճակագրություն և տվյալների գիտություն», այնպես էլ «Հավանականու-
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թյունների տեսություն և մաթեմատիկական վիճակագրություն» մասնա-

գիտություններով սովորող ուսանողներին:  

Դասագիրքը եզրափակվում է երկու հավելվածով, որի առաջին մա-

սում բերվում են մատրիցների տեսությանը վերաբերող անհրաժեշտ գա-

ղափարները, իսկ երկրորդում` դիտարկվում են պատահական մատրից-

ները ու բազմաչափ նորմալ բաշխումները և դրանց կարևոր հատկու-

թյունները: Վերջնամասում ներկայացված են անհրաժեշտ բաշխումների 

աղյուսակները: 

Նշենք բակալավրիատի ուսանողների կիսամյակային դասընթացի 

համար առաջարկվող գրքի հետևյալ պարագրաֆները (սկիզբը տե՛ս գրքի 

I-ին մասում)՝ 

«Մաթեմատիկական վիճակագրություն »՝ գլուխ 8, գլուխ 9 §§ 9.1 (9.2), 

9.3 – 9.7, գլուխ 10, §§ 10.1, 10.5, գլուխ 11, §§ 11.1, 11.2, գլուխ 12 §§ 12.1, 

12.2:  

«Կիրառական վիճակագրություն »՝ գլուխ 8, գլուխ 9 §§ 9.3 – 9.5, գլուխ 

10 §§ 10.1 – 10.3, 10.5, գլուխ 11 §§ 11.1, 11.2, գլուխ 12 §§ 12.1, 12.2:   

«Տնտեսաչափություն »՝ գլուխներ 11 և 12: 

Դասագրքում բերված օրինակաները և խնդիրները վերցված են [4], 

[5], [7], [11], [13], [16] և [18] գրքերից: 

Հեղինակը խորին շնորհակալություն է հայտնում գիտական խմբա-

գիր պրոֆեսոր Վիկտոր Օհանյանին բազմաթիվ դիտողություններ և կա-

րևոր ցուցումներ տալու համար: Շնորհակալություն է հայտնում նաև 

գրախոսներին արժեքավոր դիտողությունների համար, ինչպես նաև «Հա-

վանականությունների տեսության և մաթեմատիկական վիճակագրու-

թյան» ամբիոնի աշխատողներին գրքում նկատած մի շարք վրիպումների 

համար: 

 

Կարեն Գասպարյան 

Երևան, 2025 
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Գլուխ 8 

Վիճակագրական վարկածների ստուգում 
  

Ի տարբերություն դասագրքի առաջին մասում տրված գնահատման 

տեսության, որտեղ նմուշի միջոցով կառուցվում էին անհայտ պարամետ-

րերի համար կետային և միջակայքային գնահատականները, դասագրքի 

երկրորդ մասի վիճակագրական վարկածների ստուգման բաժնում վար-

կածների ստուգումը կատարվում է որոշակի վիճականիների օգնությամբ, 

որոնց ընդունած արժեքը, համեմատելով որոշակի կրիտիկական (եզրա-

յին) արժեքների հետ, վարկածները հերքվում են կամ ընդունվում: 

 

       § 8.1. Անհրաժեշտ սահմանումներ: Ոչ ռանդոմիզացված և  

       ռանդոմիզացված հայտանիշներ 

 

Փորձի ընթացքում դիտվող պատահական մեծության բաշխման 

տեսքի կամ բնութագրիչների վերաբերյալ ցանկացած ենթադրություն 

կոչվում է վիճակագրական վարկած: Այն անվանվում է հիմնական կամ 

զրոյական վարկած և նշանակվում ℍ0-ով: Հիմնական վարկածին հակա-

դրվող վարկածը կոչվում է երկընտրանքային կամ մրցող վարկած և նշա-

նակվում ℍ1-ով: Վարկածը կոչվում է պարզ, եթե այն միարժեք է որոշում 

պատահական մեծության բաշխումը և բարդ` հակառակ դեպքում:  

𝜉 պատահական մեծության P = P𝜉 բաշխման տեսքի վերաբերյալ 

վարկած է կոչվում ℍ0 : P ∈ 𝒫0 տեսք ունեցող վարկածը, որտեղ 𝒫0-ն որո-

շակի «թույլատրելի» 𝒫 բաշխումների դասի ենթադաս է: Որպես 

երկընտրանքային վարկած դիտարկվում է ℍ1 : P ∈ 𝒫1 վարկածը, որտեղ 

𝒫1 = 𝒫 \ 𝒫0:  

 



§ 8.1. Անհրաժեշտ սահմանումներ: Ոչ ռանդոմիզացված և 

ռանդոմիզացված հայտանիշներ 
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ℍ0 : P ∈ 𝒫0 վարկածը կոչվում է պարամետրական, եթե բաշխումների 

𝒫 = {Pθ, θ ∈ Θ ⊂ ℛ} դասը պարամետրական է: Այդ դեպքում 𝒫0 և 𝒫1 = 𝒫 ∖

𝒫0 դասերը կարելի է ներկայացնել 

𝒫0 = {Pθ, θ ∈ Θ0} և 𝒫1 = {Pθ, θ ∈ Θ1} (Θ = Θ0 ∪ Θ1,  Θ0 ∩ Θ1 = ∅) 

տեսքով, իսկ ℍ0 և ℍ1 վարկածները կգրվեն հետևյալ կերպ՝ 

ℍ0 : θ ∈ Θ0  և  ℍ1 : θ ∈ Θ1: 

Ենթադրվում է, որ պարամետրական Θ բազմության և բաշխումների 

𝒫 դասի միջև տեղի ունի փոխմիարժեք համապատասխանություն՝  

Pθ : Θ ⇔ 𝒫 (θ1 ≠ θ2 ∈ Θ ⇔  Pθ1 ≠ Pθ2): 

ℍ0 : θ ≠ θ0 վարկածը (θ0 ∈ ℛ ) կոչվում է երկկողմանի բարդ վարկած, 

իսկ ℍ0
− : θ < θ0 և ℍ0

+: θ > θ0 վարկածները՝ միակողմանի (համապատաս-

խանաբար՝ ձախակողմյան և աջակողմյան) բարդ վարկածներ:  

Օրինակ 8.1: Ենթադրենք հիմնական վարկածն է` ξ պատահական 

մեծությունը բաշխված է որոշակի ֆիքսված 𝑚0 միջինով և 𝜎2 = 1 ցրված-

քով նորմալ օրենքով` ℍ0 : P𝜉  ~ ℕ(𝑚0, 1), իսկ երկընտրանքային վար-

կածը` ℍ1 : P𝜉  ~ ℕ(𝑚, 1), որտեղ 𝑚 ≠ 𝑚0: Այստեղ ℍ0-ն պարզ վարկած է, 

իսկ ℍ1-ը՝ բարդ: Որպես «թույլատրելի» բաշխումների դաս՝ վերցնենք 

նորմալ բաշխումների  𝒫 = ℕ(𝑚, 1) դասը, որտեղ 𝑚 ∈ ℛ : Որպես 𝒫0 դաս 

դիտարկենք 𝒫0 =  ℕ(𝑚0, 1) դասը, իսկ 𝒫1 դաս` 𝒫1 = ℕ(𝑚, 1), որտեղ          

𝑚 ∈ ℛ ∖ {𝑚0}: ℍ0 վարկածը կարելի է ներկայացնել ℍ0 : 𝑚 = 𝑚0 տեսքով 

(Θ0 = {𝑚0}), իսկ  ℍ1 -ը` ℍ1 : 𝑚 ≠ 𝑚0 տեսքով (Θ1 = ℛ ∖ {𝑚0}):    

Ստուգել ℍ0 : P ∈ 𝒫0 վարկածն ընդդեմ ℍ1 : P ∈ 𝒫1 երկընտրանքայինի 

նշանակում է 𝜉 պատահական մեծությանը համապատասխանող 𝐗 =

= (𝑋1, 𝑋2, … , 𝑋𝑛) (պատահական) նմուշի ընդունած 𝐱 = (𝑥1, 𝑥2, … , 𝑥𝑛) 

արժեքի հիման վրա, որը համաձայնեցվում է ℍ0  վարկածի հետ, կայաց-

նել 𝑑0 որոշում ` ընդունել այդ վարկածը կամ, հակառակ դեպքում, ընդու-

նել 𝑑1 որոշում  հերքել այդ վարկածը, այսինքն՝ ընդունել ℍ1 վարկածը: 
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𝒳𝑛 = 𝒳 ×𝒳 ×…𝒳⏟        
𝑛

 նմուշային տարածության (𝒳 = 𝜉(Ω)) կամայական 

չափելի 𝛿 : 𝒳𝑛 → {𝑑0, 𝑑1} արտապատկերում {𝑑0, 𝑑1} որոշումների բազ-

մությունը կոչվում է ℍ0 վարկածն ընդդեմ ℍ1-ի ստուգման ոչ ռանդո-

միզացված (ոչ պատահական) հայտանիշ (𝜹 հայտանիշ):  

 𝛿 արտապատկերումն առաջացնում է 𝒳𝑛 տարածության տրոհում՝ 

𝒳𝑛 = 𝒳0 ∪𝒳1,   𝒳0 ∩𝒳1 = ∅: 

𝒳1 = {𝐱 ∈ 𝒳
𝑛: 𝛿(𝐱) = 𝑑1} բազմությունը կոչվում է ոչ ռանդոմիզացված 

հայտանիշին համապատասխանող կրիտիկական տիրույթ, իսկ   

𝒳0 = {𝐱 ∈ 𝒳
𝑛: 𝛿(𝐱) = 𝑑0} բազմությունը` թույլատրելի տիրույթ:  

𝜑(𝐱) = 𝟙𝒳1(𝐱) ֆունկցիան կոչվում է հայտանիշի կրիտիկական ֆունկցիա: 

Այսպիսով, եթե 𝐱 ∈ 𝒳1 (𝜑(𝐱) = 1), ապա ընդունվում է 𝑑1 որոշում ՝ հերքել  

ℍ0  վարկածը: Հակառակ դեպքում, երբ 𝐱 ∈ 𝒳0-ին, կասենք, որ x արժեքը 

չի հակասում ℍ0 վարկածին և ընդունվում է 𝑑0 որոշումը:  

ℍ0  վարկածն ընդդեմ  ℍ1-ի ստուգման հայտանիշը կոչվում է ռանդո-

միզացված, եթե նմուշի ընդունած 𝐱 արժեքի հիման վրա ℍ0  վարկածը 

հերքելու (𝑑1) կամ ընդունելու (𝑑0) որոշումների միջև ընտրությունը կա-

տարվում է 𝐴 և 𝐴̅ երկու ելքով լրացուցիչ փորձի (ռանդոմիզացիայի) օգ-

նությամբ, ընդ որում, այդ ընտրության հավանականությունը կախված է 

x-ից՝  

𝜑(𝐱) ∶= P(𝛿(𝐗) = 𝑑1| 𝐗 = 𝐱),     1 − 𝜑(𝐱) = P(𝛿(𝐗) = 𝑑0| 𝐗 = 𝐱): 

(Այստեղ P(∙ | ∙)-ը պայմանական հավանականության նշանն է): Եթե 

փորձն ավարտվում է 𝐴 ելքով, ապա ընդունվում է 𝑑1 որոշումը, հակառակ 

դեպքում՝ 𝑑0 որոշումը: 𝜑(𝐱) պայմանական հավանականությունը կոչվում 

է ռանդոմիզացված հայտանիշի կրիտիկական ֆունկցիա: Մասնավո-

րապես, ոչ ռանդոմիզացված հայտանիշի դեպքում 𝜑(𝐱) ֆունկցիան 

ընդունում է միայն 0 և 1 արժեքներ, և 𝜑(𝐱) = 𝟙𝓧𝟏(𝐱): 

Օրինակ 8.2: Դիցուք  𝐗  ~ ℕ(θ, 25) նմուշ է անհայտ θ միջինով նորմալ 

բաշխումների դասից: Ստուգվում է ℍ0
 : θ ≤ 15 վարկածն ընդդեմ          
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ℍ1
 :  θ > 15 երկընտրանքայինի: Որպես հայտանիշի կրիտիկական տի-

րույթ՝դիտարկենք 𝒳1 = {𝐱 ∈ 𝒳
𝑛:  𝐱̅  > 15 + 5 √𝑛⁄  }  բազմությունը: Պարզ է, 

որ 𝜑(𝐱) = 𝟙𝒳1(𝐱) կրիտիկական ֆունկցիայով հայտանիշը կլինի ոչ 

ռանդոմիզացված:    

 Դիցուք 𝐗  ~ P որոշակի «թույլատրելի» բաշխումների 𝒫 դասից P 

բաշխմանը համապատասխանող նմուշ է: 𝜑(𝐱) կրիտիկական ֆունկցիա-

յով ռանդոմիզացված հայտանիշի հզորության ֆունկցիա կոչվում է 𝒫 

դասի վրա որոշված՝  

𝑊𝜑(P) = EP[𝜑(𝐗)] = EP[P(𝛿(𝐗) = 𝑑1| 𝐗)] = EP (EP(𝟙(𝛿(𝑋 )=𝑑1)|𝐗)) = 

 = EP(𝟙(𝛿(𝐗)=𝑑1)) = P(𝛿(𝐗) = 𝑑1) 

ֆունկցիոնալը, որը ցույց է տալիս ℍ0 վարկածը հերքելու հավանականու-

թյունը (այստեղ օգտագործվել են պայմանական մաթեմատիկական 

սպասման հատկությունները (տե՛ս Ширяев [14])): 

Ոչ ռանդոմիզացվածի դեպքում հզորության ֆունկցիան կլինի` 
 

𝑊𝜑(P) = EP[𝜑(𝐗)] = P(𝐗 ∈ 𝒳1) = P(𝛿(𝐗) = 𝑑1): 
 

𝑊𝜑(P) հզորության ֆունկցիան, դիտարկված երկընտրանքային բաշ-

խումների 𝒫1 դասի վրա, կոչվում է հայտանիշի հզորություն, որը ցույց է 

տալիս երկընտրանքային վարկածը հերքելու հավանականությունը:  

 

       § 8.2.  I և II սեռի սխալներ 
 

Դիտարկենք  ℍ0 : P ∈ 𝒫0 վարկածն ընդդեմ ℍ1 : P ∈ 𝒫1 երկընտրան-

քայինի ստուգման հարցը: Այդ խնդիրը լուծելու ընթացքում հայտանիշի 

կիրառումը կարող է հանգեցնել երկու տեսակի սխալների` 

 ℍ0 վարկածը «հերքելու» որոշում ընդունելը, երբ այն իրականում 

ճիշտ է, կոչվում է I սեռի սխալ: ℍ0  վարկածն «ընդունելու» որոշում կա-

յացնելը, երբ այն իրականում տեղի չունի, կոչվում է II սեռի սխալ:  

Ռանդոմիզացված դեպքում I և II սեռի սխալի հավանականություն-

ները ներկայացվում են հետևյալ ձևով` 
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I սեռի սխալի հավանականությունը` 

𝛼𝜑(P) ∶=𝑊𝜑(P) = EP[𝜑(𝐗)] = P(𝛿(𝐗) = 𝑑1),  P ∈ 𝒫0, 

II սեռի սխալի հավանականությունը` 

𝛽𝜑(P) ∶= 1 −𝑊𝜑(P) = P(𝛿(𝐗) = 𝑑0), P ∈ 𝒫1: 

Ոչ ռանդոմիզացվածի դեպքում I և II սեռի սխալի հավանականու-

թյունները կլինեն` 

 I սեռի սխալի հավանականությունը՝  

𝛼𝜑(P) = P(𝐗 ∈ 𝒳1),  𝐗
 ~ P ∈ 𝒫0, 

II սեռի սխալի հավանականությունը՝  

𝛽𝜑(P) = P(𝐗 ∈ 𝒳0),  𝐗
 ~ P ∈ 𝒫1: 

Դիտողություն: Վարկածների ստուգումը ցանկալի է կատարել 

այնպես, որ I և II սեռի սխալի 𝛼𝜑(P) և 𝛽𝜑(P) հավանականությունները լի-

նեն հնարավորինս փոքր: Սակայն, նմուշի ֆիքսված ծավալի դեպքում սո-

վորաբար անհնարին է լինում միաժամանակ փոքրացնել այդ երկու 

հավանականությունները: 

Հայտանիշի չափ կոչվում է 
 

𝛼 = sup
P∈𝒫0

𝛼𝜑(P) 

մեծությունը:  

Օրինակ 8.3: Դիտարկենք օրինակ 8.2-ում բերված հայտանիշը: 

Գտնենք այդ հայտանիշի հզորությունը և I ու II սեռի սխալի հավանա-

կանությունները: 

Հայտանիշի հզորության ֆունկցիան կլինի` 

𝑊𝜑(θ) = Pθ(𝐗 ∈ 𝒳1) = Pθ(𝐗̅ > 15 + 5 √𝑛⁄ ) = 1 − Pθ(𝐗̅ ≤ 15 + 5 √𝑛⁄ ): 

Քանի որ 

𝐗̅ =
1

𝑛
 ∑𝑋𝑖

𝑛

𝑖=1

 ~ ℕ(θ,  25 𝑛⁄ ),   ապա  
𝐗̅ − θ

5
 √𝑛 ~ ℕ(0, 1), 
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 և հայտանիշի հզորության համար (θ > 15) կստանանք`  
 

𝑊𝜑(θ) = 1 − Φ(
15 + 5 √𝑛 − θ⁄

 5 √𝑛 ⁄
) = 1 − Φ(1 −

θ − 15

5
√𝑛) > 1 − Φ(1) ≈

≈ 0.16 ∶ 

Հեշտ է տեսնել, որ հայտանիշի չափը հավասար է 

 𝛼 = sup
θ≤15

𝑊𝜑(θ) =1 −  Φ(1) ≈ 0.16, 

այնպես որ, I սեռի սխալի հավանականությունը կլինի`   

   𝛼𝜑(θ) = Pθ(𝐗 ∈ 𝒳1) ≤ 0.16  (θ ≤ 15 ): 

II սեռի սխալի հավանականության համար (θ > 15) կստանանք`  

𝛽𝜑(θ) = Pθ(𝐗 ∈ 𝒳0) = Pθ(𝐗̅ ≤ 15 + 5 √𝑛⁄ ) = Φ(1 −
θ − 15

5
√𝑛) < 

< Φ(1) ≈ 0.84:    

Օրինակ 8.4: Դիցուք  𝐗 = (𝑋1) ~  ℕ(θ,  σ0
2) (θ ∈ ℛ,  σ0

 > 0  ֆիքսված է) 

մեկ ծավալի նմուշ է: Քննարկենք ℍ0 : θ = 0 վարկածն ընդդեմ ℍ1 : θ = 1 

երկընտրանքային վարկածի ստուգման խնդիրը: 

Որպես ոչ ռանդոմիզացված հայտանիշի կրիտիկական ֆունկցիա 

դիտարկենք  

𝜑(𝑥) = {
1,   եթե  𝑥 > 𝑐

0,   եթե  𝑥 ≤ 𝑐
 

ֆունկցիան, որտեղ 𝑐 ∈ ℛ որոշակի հաստատուն թիվ է: 

I և II սեռի սխալի հավանականությունները կլինեն` 

𝛼𝜑(P0) = P0(𝑋1 ∈ 𝒳1) = P0(𝑋1 > 𝑐),    𝛽𝜑(P1) = P1(𝑋1 ∈ 𝒳0) = P1(𝑋1 ≤ 𝑐), 

որտեղ P0-ն համապատասխանում է ℕ(0, 𝜎0
2) բաշխմանը, իսկ P1-ը՝ 

ℕ(1, 𝜎0
2):  

Այդ վարկածներին համապատասխանող 𝜑0(𝑥) և 𝜑1(𝑥) բաշխումների 

խտության ֆունկցիաների գծապատկերներն ունեն հետևյալ տեսքը՝
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𝑐 թիվն աճելուն զուգահեռ I սեռի սխալի 𝛼𝜑(P0) հավանականությունը 

փոքրանում է, իսկ II սեռի սխալի 𝛽𝜑(P1) հավանականությունը, ընդհա-

կառակն՝ մեծանում, այնպես որ, միաժամանակ փոքրացնել այդ երկու մե-

ծությունները հնարավոր չէ:  

Այդ դժվարությունը հաղթահարելու համար առաջարկվում է դի-

տարկել վարկածների ստուգման խնդրի մեկ ուրիշ դրվածք:  

 

       § 8.3. Վարկածների ստուգման խնդրի դրվածք 

 

Դիցուք 𝐗 = (𝑋1, 𝑋2, … , 𝑋𝑛)
 ~ P նմուշը համապատասխանում է բաշ-

խումների  𝒫 դասից որոշակի P բաշխմանը և 𝒫0 ⊂ 𝒫-ն, 𝒫 դասի ենթադաս 

է (𝒫1 = 𝒫 ∖ 𝒫0):  

Ստուգվում է 

 ℍ0 : P ∈ 𝒫0 վարկածն ընդդեմ ℍ1 : P ∈ 𝒫1 երկընտրանքայինը:   (8.1) 

Դիցուք 𝛼 ­ն (0< 𝛼 <1) 0-ին բավականաչափ «մոտ» որոշակի թիվ է, 

որն անվանվում է նշանակալիության մակարդակ (սովորաբար 𝛼 = 0.05, 

0.01, 0.001):  

Դիտարկենք I սեռի սխալը 𝛼 մակարդակը չգերազանցող ռանդոմի-

զացված  𝜹-հայտանիշների դասը` 

𝑥 0 𝑐 

𝜑1(𝑥) 𝜑0(𝑥) 

1 

𝛽𝜑(P1) 𝛼𝜑(P0) 
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𝕂𝛼 = {𝜹:  𝛼𝜑(P) ≤ 𝛼 բոլոր P ∈ 𝒫0}: 

 𝜑∗(𝐱) կրիտիկական ֆունկցիայով 𝕂𝛼 դասից այն 𝜹∗ հայտանիշը, որի 

համար  

𝛽𝜑(P) = 1 −𝑊𝜑(P)  

II սեռի սխալի հավանականությունը բոլոր P ∈ 𝒫1-ից փոքրագույնն է 

(կամ 𝑊𝜑(P) հզորությունը՝ մեծագույնը), կոչվում է օպտիմալ կամ հավա-

սարաչափ (ըստ բոլոր բաշխումների համար 𝒫1 դասից) առավել հզոր 

(ՀԱՀ) հայտանիշ: 

Այսպիսով, 𝜑∗(𝐱) կրիտիկական ֆունկցիայով օպտիմալ հայտանիշը 

բավարարում է հետևյալ պայմանները՝ 
 

{
𝑊𝜑∗(P) = EP[𝜑

∗(𝐗)] ≤ 𝛼,   բոլոր P ∈ 𝒫0
𝑊𝜑∗(P) = sup

𝛿∈ 𝕂𝛼

𝑊𝜑(P) ,    բոլոր P ∈ 𝒫1     
∶ 

𝜑(𝐱) կրիտիկական ֆունկցիայով  𝕂α դասից այն հայտանիշը, որը բո-

լոր երկընտրանքային բաշխումների համար հերքում է ℍ0  վարկածը հայ-

տանիշի α չափը գերազանցող հավանականությամբ, այսինքն՝ 
 

{
𝑊𝜑(P) ≤ 𝛼,   բոլոր  P ∈ 𝒫0
𝑊𝜑(P) ≥ 𝛼, բոլոր  P ∈ 𝒫1

 , 

կոչվում է անշեղ հայտանիշ: 

Հայտանիշը կոչվում է ունակ, եթե 

lim
𝑛→∞

𝑊𝜑(P) = 1,   բոլոր  P ∈ 𝒫1: 

Օրինակ 8.5: Կրկին դիտարկենք օրինակ 8.2-ում բերված ոչ ռան-

դոմիզացված հայտանիշը: Գտնենք հայտանիշի չափը, հզորությունը և 

ստուգենք անշեղությունն ու ունակությունը: Բերենք նաև հզորության 

ֆունկցիայի գրաֆիկը, երբ  𝑛 = 25-ի:  
 

 Օրինակ 8.3-ից հետևում է, որ հայտանիշի չափը  𝛼 ≈ 0.16, իսկ 

հզորությունը, երբ θ > 15 (այսինքն՝ բոլոր երկընտրանքների դեպքում), 
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𝑊𝜑(θ) > 0.16: Այնպես որ հայտանիշն անշեղ է: Մյուս կողմից՝ հզորության 

ֆունկցիայի  

𝑊𝜑(θ) = 1 − Φ(1 −
θ − 15

5
√𝑛) 

ներկայացումից բխում է, որ  
 

lim
𝑛→∞

𝑊𝜑(θ) = 1,  երբ  θ > 15, 
 

հետևաբար՝ հայտանիշը նաև ունակ է: 

𝑊𝜑(θ) հզորության ֆունկցիայի գծապատկերն ունի հետևյալ տեսքը 

(𝑛 = 25)՝  

  

 

 

  

 

 

 

 

          

     

                                 ∎  
  

(8.1) վարկածները ստուգման հայտանիշի 𝒳1 կրիտիկական տիրույ-

թը սովորաբար տրվում է որոշակի 𝑇(𝐗) ∈ ℛ վիճականու միջոցով և ունի 

հետևյալ տեսքերից մեկը՝ 

{𝐱 ∈ 𝒳𝑛 : 𝑇(𝐱) < 𝑐}, {𝐱 ∈ 𝒳𝑛: 𝑇(𝐱) > 𝑐}                      (8.2) 

կամ 

{𝐱 ∈ 𝒳𝑛: (𝑇(𝐱) < 𝑐1) ∪ (𝑇(𝐱) > 𝑐2), 𝑐1 < 𝑐2}: 

Այս ներկայացումներում մասնակցող 𝑇𝑛 = 𝑇(𝐗) վիճականին կոչվում 

է հայտանիշի վիճականի, իսկ 𝑐, 𝑐1 և 𝑐2 թվերը՝ կրիտիկական կամ եզ-

րային արժեքներ:  

0,16 

0,5 

1 

𝑊𝜑(θ) 

θ 0 14 15 16 
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Հայտանիշի 𝑇𝑛 վիճականին կոչվում է ոչ պարամետրական կամ 

բաշխումից «ազատ» (ասիմպտոտիկ ոչ պարամետրական), եթե դրա H 

բաշխումը (կամ ասիմպտոտիկ բաշխումը) կախված չէ P ∈ 𝒫 բաշխում-

ներից, այսինքն՝  

𝔾𝑇(𝐵) ∶= P(𝑇(𝐗) ∈ 𝐵) = H(𝐵)  

բոլոր P ∈ 𝒫-ից և բոլոր 𝐵 ∈ ℬ(ℛ) բորելյան բազմությունների համար 

(կամ  𝑇𝑛
𝑑
→  H, 𝑛 → ∞): 

Վարկածների ստուգման (8.1) խնդիրը լուծելու համար պետք է 

գտնվեն հայտանիշի ոչ պարամետրական կամ ասիմպտոտիկ ոչ պարա-

մետրական վիճականին և տվյալ 𝛼 նշանակալիության մակարդակի հա-

մար այնպիսի 𝑐 = 𝑐𝛼 կրիտիկական կամ ասիմպտոտիկ կրիտիկական 

եզր, որ բոլոր P ∈ 𝒫0 բաշխումների համար բավարարվի  

P(𝐗 ∈ 𝒳1𝛼 ) ≤ 𝛼                          (8.3) 

պայմանը (այստեղ 𝒳1𝛼 կրիտիկական տիրույթն ունի (8.2)-ում նշված 

տեսքերից մեկը):   

Այսպիսով, վարկածների ստուգումը կատարվում է հետևյալ կերպ. 

Եթե 𝐗 = (𝑋1, 𝑋2, … , 𝑋𝑛) նմուշի դիտված 𝐱 = (𝑥1, 𝑥2, … , 𝑥𝑛) արժեքը 

պատկանում է (8.3) պայմանը բավարարող կրիտիկական տիրույթին՝ 

𝐱 ∈ 𝒳1𝛼, ապա ℍ0 վարկածը 𝛼 նշանակալիության մակարդակով հերքվում 

է, ընդ որում, եթե վարկածը իրականում ճիշտ է ( P ∈ 𝒫0 ), ապա հերքումը 

կատարվում է 𝛼-ի արժեքը չգերազանցող հավանականությամբ: Ընդհա-

կառակն, եթե դիտված արժեքը պատկանում է թույլատրելի տիրույթին՝ 

𝐱 ∈ 𝒳0𝛼, ապա համարվում է, որ x արժեքը 𝛼 մակարդակով համաձայնեց-

վում է ℍ0 վարկածի հետ, և վարկածն ընդունվում է: 
 

Վարկածների ստուգումը կարելի է կատարել՝ օգտագործելով նաև 

այսպես կոչված 𝐏 -արժեքի գաղափարը: 

𝐏 - արժեք կամ հասանելի նշանակալիության մակարդակ (P –Value 

(P-V)) կոչվում է նշանակալիության մակարդակի այն փոքրագույն 
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արժեքը, որի դեպքում հայտանիշի 𝑇𝑛 = 𝑇(𝐗) վիճականին հերքում է ℍ0  

վարկածը: 

Այլ կերպ ասած՝ պարամետրական վարկածները ստուգման ժամա-

նակ ℍ0  վարկածը բավարարվելու դեպքում (ℍ0 : P ∈ 𝒫0) 𝐏 - արժեքը 

սահմանվում է հետևյալ կերպ ՝  

ա) աջակողմյան ℍ1
+: θ > θ0 (ձախակողմյան ℍ1

−: θ < θ0) երկընտրան-

քային վարկածի դեպքում՝ 

P-V = P(𝐗 ∈ 𝒳1 ) = P(𝑇𝑛 > 𝑡0) = H((𝑡0,∞)) 

 (P-V = P(𝐗 ∈ 𝒳1 ) = P(𝑇𝑛 < 𝑡0) = H((−∞, 𝑡0)) ), 

բ) երկկողմանի ℍ1 : θ ≠ θ0 երկընտրանքային վարկածի դեպքում՝ 

P-V = 2min {P(𝑇𝑛 < 𝑡0), P(𝑇𝑛 > 𝑡0)} = 2min{H((−∞, 𝑡0)), H((𝑡0,∞))}  

(P-V = 2H((𝑡0,∞)), եթե H բաշխումը համաչափ է 0 կետի նկատմամբ),  

որտեղ՝ 𝑇𝑛  ~ H ՝ H բաշխում ունեցող ոչ պարամետրական վիճականին է, 

իսկ 𝑡0 = 𝑇𝑛(𝐱)-ը՝ 𝑇𝑛(𝐗) վիճականու ընդունած արժեքը, երբ փորձի ըն-

թացքում  X  նմուշն ընդունում է  x  արժեքը (𝐗(𝜔0) = 𝐱): 

Այսպիսով, եթե տվյալ 𝛼 նշանակալիության մակարդակի համար  

P-V < 𝛼, ապա ℍ0 վարկածը հերքվում է, հակառակ դեպքում՝ չի հերքվում: 

 Օրինակ 8.6: Օրինակ 8.2-ի պայմաններում գտնենք ℍ0  վարկածն 

ընդդեմ ℍ1 երկընտրանքայինի ստուգող ոչ ռանդոմիզացված հայտանիշի 

վիճականին և 𝑐𝛼  (𝛼 =  0.16) կրիտիկական եզրն այնպես, որ Pθ(𝐗 ∈ 𝒳1) ≤ 𝛼, 

երբ  θ ≤ 15:  

Քանի որ  𝑇(𝐗) = 
𝐗̅ − θ

5
 √𝑛 ~ ℕ(0, 1), ապա  𝑇(𝐗)  հայտանիշի  վիճակա- 

նին ոչ պարամետրական է: Մյուս կողմից, օրինակ 8.3-ից ունենք` 

Pθ(𝐗 ∈ 𝒳1) = Pθ (
𝐗̅ − θ

5
 √𝑛 > 1) ≤ 0.16, երբ  θ ≤ 15,  

որտեղից՝  𝑐𝛼 = 1: 

 



Խնդիրներ 

21 

Խնդիրներ 
 

8.1. Դիցուք 𝐗  ~ ℕ(θ , 1) նմուշ է նորմալ բաշխումից: Ստուգվում է ℍ0 : 

θ = 0 վարկածն ընդդեմ ℍ1 : θ = 1 երկընտրանքայինի: ℍ0 վարկածը 

հերքվում է, եթե 𝑋(𝑛) ≥ 3: Գտնել I և II սեռի սխալի հավանականություն-

ները: 
 
 

Պատասխան՝  

𝛼𝜑(θ) = 1 – (1 − Φ(3))
𝑛
≈ 1 − 0.99865𝑛 ,   𝛽𝜑(θ) = (1 − Φ(2))

𝑛
≈ 0.977𝑛: 

8.2. Դիտարկվում է երկու վարկած․ ℍ0-ն, որ նմուշային արժեքներն 

ունեն նորմալ բաշխում, և ℍ1 -ը, որ այդ արժեքները բաշխված են Պուասո-

նի օրենքով: Կառուցել հայտանիշ, որի I և II սեռի սխալի հավանականու-

թյունները լինեն հավասար 0-ի: 
 
 

 

Պատասխան` ℍ0  վարկածը հերքվում է, եթե նմուշի գոնե մեկ արժեքն 

ամբողջ թիվ է : 

8.3. Դիցուք 𝐗 ~ ℿ(𝜆) նմուշ է Պուասոնի բաշխումից: Դիտարկվում է 

ℍ0 : 𝜆 = 1 վարկածն ընդդեմ ℍ1 : 𝜆 = 3 երկընտրանքայինի: 𝛿 - հայտանիշն 

ընդունում է ℍ0  վարկածը, եթե 𝑋(𝑛)  ≤ 1, և ընդունում ℍ1 -ը, եթե 𝑋(𝑛) > 1: 

Գտնել նմուշի այն նվազագույն ծավալը, որի դեպքում 𝛿 - հայտանիշի 

հզորությունը գերազանցի տվյալ  𝛾 (0 < 𝛾 < 1) թիվը: 
 

Պատասխան՝   𝑛0 = [
ln(1−𝛾)

ln 4−3
] + 1: 

8.4. Դիցուք 𝐗 ~ 𝕌(0, θ) նմուշ է [0, θ] միջակայքում հավասարաչափ 

բաշխումից: Ստուգվում է ℍ0 : θ = 2  վարկածն ընդդեմ ℍ1
+: θ > 2 

երկընտրանքայինի: Ենթադրենք  ℍ0  վարկածը հերքվում է, եթե 𝑋(𝑛) ≥ 𝑐 : 

Գտնել 𝑐-ի այն արժեքը, որի դեպքում I սեռի սխալի հավանականությունը 

լինի հավասար 𝛼-ի: Գտնել հզորության ֆունկցիան և ստուգել հայտա-

նիշի անշեղությունը և ունակությունը:  
 

Պատասխան՝ 𝑐𝛼 = 2(1 − 𝛼)
1 𝑛⁄ , 𝑊𝜑(θ) = 1 − (

𝑐

𝜃
)
𝑛

, հայտանիշն անշեղ է և 

ունակ : 
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8.5.  Դիցուք  𝐗 = (𝑋1) -ը մեկ ծավալի նմուշ է 
 

                                      𝑓θ(𝑥) = θ𝑥
θ−1𝟙(0,1)(𝑥),  θ > 0  

 

խտության ֆունկցիա ունեցող բաշխումից: Ստուգվում է  ℍ0 
− :   θ ≤ 1  վար- 

կածն ընդդեմ  ℍ1
+: θ > 1  երկընտրանքայինի:  Գտնել հայտանիշի չափը և 

հզորության ֆունկցիան, եթե ℍ0 
 վարկածը հերքվում է 𝑋1 ≥ 1, (0 < 𝜀 <<

1) դեպքում: Ստուգել հայտանիշի անշեղությունը: 
 

 

 Պատասխան՝  𝛼 = 𝜀,  𝑊𝜑(θ) = 1 − (1 − 𝜀)
θ, հայտանիշն անշեղ է:  
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Գլուխ 9  

Պարամետրական վարկածներ 

 

Պարամետրական վարկածները անհայտ պարամետրի իրական 

արժեքի վերաբերյալ վարկածներ են, որոնց ստուգման համար օպտիմալ 

և ասիմպտոտիկ օպտիմալ հայտանիշների կառուցման հիմքում ընկած է 

Ջ. Նեյմանի և Է. Պիրսոնի ներմուծած ճշմարտանմանության հարաբերու-

թյան մեթոդը: 

 

       § 9.1. Երկու պարզ վարկածի ստուգում: Նեյման-Պիրսոնի  

       ճշմարտանմանության հարաբերության հայտանիշը 

  

Դիցուք 𝐗 ~ P ∈ 𝒫 նմուշը համապատասխանում է երկու բաշխումից 

բաղկացած 𝒫 = {P0, P1} դասից որոշակի բաշխմանը: Ենթադրենք 𝑓0(𝑥)-ը 

(𝑝0(𝑥)-ը) և 𝑓1(𝑥)-ը (𝑝1(𝑥)-ը)՝ P0 և P1 բաշխումների խտություններն են, եթե 

𝜉-ն բացարձակ անընդհատ պատահական մեծություն է (կամ 𝑝𝑖(𝑥) = 

P𝑖(𝜉 = 𝑥), 𝑖 = 1, 2 հավանականությունները, եթե 𝜉-ն դիսկրետ է): Պա-

հանջվում է կատարել ընտրություն ℍ0 : P = P0 և ℍ1 : P = P1 երկու պարզ 

վարկածների միջև: 

Ճշմարտանմանության հարաբերության ֆունկցիա է կոչվում  

 𝜆 = 𝜆(𝐱) =
𝑓1(𝐱)

𝑓0(𝐱)
 (
𝑝1(𝐱)

𝑝0(𝐱)
) ,   𝐱 = (𝑥1, … , 𝑥𝑛) ∈ 𝒳

𝑛  

ֆունկցիան, որտեղ 

𝑓𝑗(𝐱) =∏𝑓𝑗(𝑥𝑖)

𝑛

𝑖=1

 (𝑝𝑗(𝐱) =∏𝑝𝑗(𝑥𝑖)

𝑛

𝑖=1

) ,   𝑗 = 0, 1,  

 P𝑗  բաշխումների ճշմարտանմանության ֆունկցիաներն են:  
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Ճշմարտանմանության հարաբերության վիճականի է կոչվում    

 Λ = Λ(𝐗) =
𝑓1(𝐗)

𝑓0(𝐗)
 (
𝑝1(𝐗)

𝑝0(𝐗)
) ,    𝐗 = (𝑋1, … , 𝑋𝑛) 

պատահական մեծությունը: 

Ճշմարտանմանության հարաբերության (ՃՀ) հայտանիշ կոչվում է 

 𝜑∗(𝐱) = {

1,   եթե  𝜆 > 𝑐 

𝜀,   եթե  𝜆 = 𝑐 

0,   եթե  𝜆 < 𝑐 
 (0 < 𝜀 <  1, 𝑐 > 0)                  (9.1) 

կրիտիկական ֆունկցիայով ռանդոմիզացված հայտանիշը: 

ℍ0 : P = P0 վարկածն ընդդեմ ℍ1 : P = P1 երկընտրանքային վարկածի 

ստուգման վերաբերյալ ճիշտ է հետևյալ կարևոր արդյունքը (տե՛ս Леман 

[9])՝ 

        Թեորեմ 9.1 (Նեյման - Պիրսոնի ֆունդամենտալ լեմմա): Տրված 

𝛼 (0 < 𝛼 < 1) նշանակալիության մակարդակի համար (P0(Λ
 > 0) ≥ 𝛼 

պայմանի դեպքում ) գոյություն ունեն այնպիսի 𝑐𝛼 > 0 և 𝜀𝛼  (0 ≤ 𝜀𝛼 ≤ 1) 

թվեր, որ  𝜑∗ կրիտիկական ֆունկցիայով ՃՀ հայտանիշը (տե՛ս (9.1) -ը, 

որտեղ  𝑐 = 𝑐𝛼, 𝜀 = 𝜀𝛼) 𝛼 չափ ունեցող  
 

𝕂𝛼
0 = {δ: 𝑊𝜑(P0) = 𝛼}  

հայտանիշների դասում օպտիմալ է (առավել հզոր), այսինքն՝ 

    {
𝑊𝜑∗(P0) = E0[𝜑

∗(𝑿 )] = 𝛼,                                  (9.2)

 𝑊𝜑∗(P1) = sup
𝛅∈𝕂𝛼

0
𝑊𝜑(P1),                                         (9.3)  

որտեղ՝  E0 ∶= EP0: Բացի այդ, 𝜑∗հայտանիշն անշեղ է, այսինքն` 𝑊𝜑∗(P1) > 𝛼: 

Թեորեմում բերված 𝑐𝛼 և 𝜀𝛼 թվերը 

E0[𝜑
∗(𝐗)] = P0(Λ

 > 𝑐)  +  𝜀 P0(Λ
 = 𝑐) = 𝛼                   (9.4) 

 հավասարման (տե՛ս (9.2)-ը) լուծումներն են:  
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Ա պ ա ց ու ց ու մ: Նախ ցույց տանք, որ (9.4) հավասարումն ըստ 𝑐-ի 

և 𝜀-ի ունի լուծումներ, և գտնենք այդ լուծումները: Ակնհայտ է, որ 

𝑔(𝑐) ∶= P0(Λ
 ≥ 𝑐) = P0(𝑓1(𝐗) ≥ 𝑐𝑓0(𝐗)) 

ֆունկցիան (0,∞) միջակայքում ձախից անընդհատ և աջից սահման 

ունեցող մոնոտոն նվազող ֆունկցիա է (քանի որ 1 − 𝑔(𝑐) = P0(Λ
 < 𝑐) =

= F0(𝑐) ֆունկցիան Λ  պատահական մեծության բաշխման ֆունկցիան է): 

Այստեղից պարզ է, որ 

𝑔(+ ∞) = 1 − F0(+ ∞) = 1, 

և, ըստ պայմանի, 

 𝑔(0 +) = 1 − F0(0 +) = P0(Λ > 0) ≥ 𝛼: 

Հետևաբար՝ գոյություն ունի այնպիսի 𝑐𝛼 > 0 թիվ, որ 

  𝑔(𝑐𝛼 + 0) < 𝛼 ≤ 𝑔(𝑐𝛼):                    (9.5) 

Այնուհետև, տեղադրելով (9.4) հավասարման մեջ 𝑐 = 𝑐𝛼, և նշանակելով 

∆+𝑔(𝑐𝛼) = 𝑔(𝑐𝛼) − 𝑔(𝑐𝛼 + 0) = P0(Λ = 𝑐𝛼), 

կստանանք` 

𝑊𝜑∗ (P0) = P0(Λ > 𝑐𝛼) +  𝜀 P0(Λ = 𝑐𝛼) = 𝑔(𝑐𝛼 + 0) + 𝜀 ∆
+𝑔(𝑐𝛼) = 𝛼: 

Այստեղից, եթե  ∆+𝑔(𝑐𝛼) ≠ 0, կունենանք`  

 𝜀𝛼 =
𝛼−𝑔(𝑐𝛼+0)

∆+𝑔(𝑐𝛼)
∶     (9.6) 

      Հակառակ դեպքում, եթե  ∆+𝑔(𝑐𝛼) = P0(Λ = 𝑐𝛼) = 0, ընդունենք 𝜀𝛼 = 0: 

Այնպես որ (9.4) հավասարումն ընդունում է 𝑔(𝑐𝛼) = 𝛼 տեսքը, այսինքն՝ 

𝑐𝛼-ն Λ  պատահական մեծության 𝛼 մակարդակով կրիտիկական եզրն է:  

Այժմ ցույց տանք (9.3) հատկությունը, այսինքն՝ որ 𝜑(𝐱) կրիտի-

կական ֆունկցիայով ցանկացած 𝛿 ∈ 𝕂𝛼
0  հայտանիշի համար ճիշտ է 

𝑊𝜑(P1) ≤ 𝑊𝜑∗(P1) 

անհավասարությունը: 
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Դիտարկենք հետևյալ ինտեգրալը (𝑑𝐱 = 𝑑𝑥1 ×⋯× 𝑑𝑥𝑛)՝  

𝒥 = ∫(𝜑∗(𝐱) − 𝜑(𝐱))

 

𝓧𝒏

(𝑓1(𝐱) − 𝑐𝛼  𝑓0(𝐱))𝑑𝐱
  = 𝒥1 + 𝒥2 , 

որտեղ                                 

𝒥1 = ∫ (𝜑∗(𝐱) − 𝜑(𝐱))(𝑓1(𝐱) − 𝑐𝛼𝑓0(𝐱))𝑑𝐱,

 

{𝐱 : 𝜑∗(𝐱) > 𝜑(𝐱)}

 

𝒥2 = ∫ (𝜑∗(𝐱) − 𝜑(𝐱))(𝑓1(𝐱) − 𝑐𝛼𝑓0(𝐱))𝑑𝐱:

 

{𝒙 : 𝜑∗(𝐱) < 𝜑(𝐱)}

 

 

Կրիտիկական ֆունկցիայի սահմանումից հետևում է, որ  

{𝐱 ∶  𝜑∗(𝐱) > 𝜑(𝐱)} = {𝐱 ∶  𝜑∗(𝐱) > 𝜑(𝐱) ≥ 0} ⊂ {𝐱 ∶  𝜑∗(𝐱) > 0}: 

Այնուհետև (9.1)-ից ունենք` 

{𝐱 ∶  𝜑∗(𝐱) > 0} ⊂ {𝐱 ∶  𝑓1(𝐱) ≥ 𝑐𝛼𝑓0(𝐱)}, 

այնպես որ՝  𝒥1 ≥ 0: 

Նման ձևով ակնհայտ ներդրումներից՝  

{𝒙 ∶  𝜑∗(𝐱) < 𝜑(𝐱)} = {𝐱 ∶  𝜑∗(𝐱) < 𝜑(𝐱) ≤ 1} ⊂ {𝐱 ∶  𝜑∗(𝐱) < 1} ⊂ 

 ⊂ {𝐱 ∶  𝑓1(𝐱) ≤ 𝑐𝛼𝑓0(𝐱)}  

հետևում է, որ 𝒥2 ≥ 0: Այսպիսով ստացվեց, որ  𝒥 = 𝒥1 + 𝒥2 ≥ 0, այսինքն՝ 

 E1[𝜑
∗(𝐗) − 𝜑(𝐗)] ≥ 𝑐𝛼E0[𝜑

∗(𝐗) − 𝜑(𝐗)] = 0 (E1 = EP1), 

որտեղից` 

 𝑊𝜑∗(P1) ≥ 𝑊𝜑(P1): 

Հետևաբար, թեորեմի առաջին մասն ապացուցված է: 

Այժմ, որպես հայտանիշ վերցնելով 𝜑∗(𝐗) ≡ 𝛼 կրիտիկական ֆունկ-

ցիայով հայտանիշը, կստանանք`  

𝑊𝜑∗(P1) ≥ 𝑊𝛼(P1) = 𝛼, 

այսինքն՝ 𝜑∗ հայտանիշն անշեղ է:       
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Օրինակ 9.1: Դիցուք 𝐗 ~ ℕ(θ,  σ2): Դիտարկենք ℍ0 : θ = θ0 վարկածն 

ընդդեմ ℍ1 : θ = θ1 երկընտրանքայինի ստուգման խնդիրը, որտեղ  

θ1 > θ0: Պահանջվում է՝  

 ա) 𝛼 նշանակալիության մակարդակով կառուցել այդ վարկածները 

ստուգող առավել հզոր հայտանիշը և գտնել II սեռի սխալի հավանա-

կանությունը, 

 բ)  գտնել հայտանիշի հզորությունը և ստուգել դրա ունակությունը, 

 գ) գտնել նմուշի այն նվազագույն ծավալը, որի դեպքում I սեռի 

սխալի հավանականությունը հավասարվի α-ին, իսկ II սեռի սխալի 

հավանականությունը չգերազանցի որոշակի 𝛽-ի արժեքը (0 < 𝛽 < 1): 

 Համաձայն պայմանի՝ P𝑖 = Pθi, 𝑖 = 0, 1 բաշխումների խտություններն 

ունեն հետևյալ տեսքը՝ 

𝑓𝑖(𝑥) =
1

𝜎√2𝜋
 exp {−

1

2𝜎2
(𝑥 − θ𝑖)

2} ,   𝑖 = 0, 1,  

որտեղից ճշմարտանմանության հարաբերության վիճականին կլինի` 

Λ = Λ(𝐗) =  
𝑓1(𝐗)

𝑓0(𝐗)
= exp {

𝑛𝐗̅

𝜎2
(θ1 − θ0) −

𝑛

2𝜎2
(θ1
2 − θ0

2)}: 

Այստեղից, համաձայն Նեյման - Պիրսոնի թեորեմի, θ1 > θ0 պայմա-

նից հետևում է, որ կրիտիկական տիրույթն ունի հետևյալ տեսքը՝ 

𝒳1 = {𝐱
 : 𝜆 ≥ 𝑐} = {𝐱 ∶  𝐱̅ ≥ 𝑐1},    𝑐1 ∶= 

1

2
(θ0 + θ1) +

𝜎2 ln 𝑐

𝑛(θ1 − θ0)
∶ 

Քանի որ Λ վիճականու 𝐺0
Λ(𝐵) = P0( Λ ∈ 𝐵), 𝐵 ∈ ℬ(ℛ+) բաշխումն 

անընդհատ է (𝐗̅ ~ ℕ(θ,  𝜎2 𝑛⁄ )), այսինքն՝ բոլոր 𝑐 > 0 թվերի համար 

P0( Λ = 𝑐) = 0, ապա 𝒳1 կրիտիկական տիրույթն ունեցող ճշմարտա-

նմանության հարաբերության հայտանիշը կլինի ոչ ռանդոմիզացված: 

 ա) Գտնենք 𝑐1 ∶= 𝑐1(𝛼) կրիտիկական եզրն այնպես, որ I սեռի սխալի 

 հավանականությունը լինի հավասար 𝛼-ի: Եթե ճիշտ է ℍ0  վարկածը, 

ապա 𝐗̅ ~ ℕ(θ0,  𝜎
2 𝑛⁄ ) և I սեռի սխալի հավանականությունը կլինի 

հավասար 
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𝛼𝜑(𝜃0) = P0( 𝐗̅ ≥ c1) = P0 (
 𝐗̅ − θ0
𝜎

√𝑛  ≥
c1 − θ0
𝜎

 √𝑛) =

= 1 −Φ( 
c1 − θ0
𝜎

√𝑛):  

𝛼𝜑(𝜃0) = 𝛼  պայմանից հետևում է, որ 

c1  −  θ0
𝜎

√𝑛 = 𝑧𝛼 ,   որտեղից  c1 = θ0 + 𝑧𝛼  
𝜎

√𝑛
∶ 

Այսպիսով, ըստ Նեյման – Պիրսոնի թեորեմի,  

𝒳1𝛼 = {𝐱 ∶  
 𝐱̅ − θ0
𝜎

√𝑛  ≥  𝑧𝛼} = {𝐱 ∶  𝐱̅ ≥ c1 = θ0 + 𝑧𝛼
𝜎

√𝑛
 } 

կրիտիկական տիրույթով հայտանիշը 𝛼 մակարդակով որոնելի առավել 

հզոր հայտանիշն է: 

Այժմ դիցուք ճիշտ է ℍ1  վարկածը: Այսինքն՝ 𝐗̅ ~ ℕ(θ1, 𝜎
2 𝑛⁄ ), ուստի II 

սեռի սխալի հավանականությունը հավասար է  
 

𝛽𝜑(θ1) = P1( 𝐗̅ < c1) = P1 (
 𝐗̅ − θ1
𝜎

√𝑛  <  
c1 − θ1
𝜎

 √𝑛) = Φ( 
c1 − θ1
𝜎

 √𝑛) = 

=  Φ(
θ0 − θ1
𝜎

 √𝑛  + 𝑧𝛼): 

բ)  Հայտանիշի հզորությունը հավասար է 

𝑊𝜑(θ1) = 1 − 𝛽𝜑(θ1) = Φ( 
θ1 − θ0
𝜎

 √𝑛  −  𝑧𝛼), 

որտեղից   θ1 > θ0  պայմանից կհետևի,որ lim
𝑛→+∞

𝑊𝜑(θ1) = 1, այսինքն՝ հայ-

տանիշն ունակ է: 

        գ)                                𝛽𝜑(θ1) = Φ( 
θ0 − θ1
𝜎

 √𝑛  + 𝑧𝛼) = 𝛽 

պայմանից բխում է `  

θ0 − θ1
𝜎

√𝑛  + 𝑧𝛼 = 𝑧1−𝛽 = − 𝑧𝛽 , 

որտեղից` 

𝑛0 = [(
 𝑧𝛼 + 𝑧𝛽

θ1 − θ0
 𝜎)

2

] + 1 
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(այստեղ [𝑎]­ն՝ 𝑎 թվի ամբողջ մասն է): Այսպիսով, 𝑛 > 𝑛0 դեպքում 

𝛽𝜑(θ1) ≤  𝛽:   

Օրինակ 𝟗. 𝟐  (տե՛ս [4]): Դիցուք 𝐗  ~ 𝔹er (θ) նմուշ է «հաջողության» θ 

(0 < θ < 1) հավանականությունով Բեռնուլիի բաշխումից: Դիտարկենք 

ℍ0 : θ = θ0 վարկածն ընդդեմ  ℍ1 : θ = θ1 (θ1 > θ0) երկընտրանքային 

վարկածը ստուգման խնդիրը: Պահանջվում է՝ 

ա) 𝛼 նշանակալիության մակարդակով կառուցել այդ վարկածները 

ստուգող Նեյման –Պիրսոնի առավել հզոր հայտանիշը, 

բ)  գտնել այդ հայտանիշի հզորությունը:  

Երբ  θ = θ𝑗,  𝑗 = 0, 1, 𝜉 ~ 𝔹er (θ𝑗) պատահական մեծության բաշխման 

օրենքն է՝ 

𝑝𝑗(𝑥) = P𝑗(𝜉 = 𝑥) = θ𝑗
𝑥(1 − θ𝑗)

1−𝑥
 ,   𝑥 = 0, 1, 

որտեղից ճշմարտանմանության հարաբերության վիճականու համար 

կստանանք` 

Λ = Λ(𝐗) =
𝑝1(𝐗)

𝑝0(𝐗)
= (
θ1
θ0
)
𝑛∙𝐗̅

(
1 − θ1
1 − θ0

)
𝑛 − 𝑛∙𝐗̅

= 

 

= [
θ1(1 − θ0)

θ0(1 − θ1)
]

𝑛∙𝐗̅

(
1 − θ1
1 − θ0

)
𝑛

:                                         (9.7) 

Քանի որ  𝑔(θ) = 
θ

1 − θ 
  ֆունկցիան (0, 1) միջակայքում աճող է, ուստի` 

𝑔(θ1)

𝑔(θ0)
=
θ1(1 − θ0)

θ0(1 − θ1)
 > 1,   θ1 > θ0, 

այնպես որ 𝜆(𝐱) ≥ 𝑐 անհավասարությունը համարժեք է 𝑛𝐱̅ ≥ 𝑐1 պայմա-

նին (տե՛ս (9.7)-ը), որտեղ  

𝑐1 ∶=
ln 𝑐 + 𝑛 ln

1 − θ0
1 − θ1

ln
θ1(1 − θ0)
θ0 (1 − θ1)

∶ 

Այսպիսով, 𝛼 նշանակալիության մակարդակով Նեյման − Պիրսոնի հայ-

տանիշի կրիտիկական տիրույթը կլինի` 
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𝒳1𝛼 = {𝐱 ∈ 𝒳
𝑛:  𝑛𝐱̅ ≥ 𝑐1(𝛼)}: 

𝑐1 = 𝑐1(𝛼) կրիտիկական եզրը գտնելու համար նկատենք, որ ℍ0  վարկա-

ծը բավարարվելու դեպքում` 

𝑇 = 𝑛 𝐗̅ =∑𝑋𝑖

𝑛

𝑖=1

 ~ 𝔹in (θ0, 𝑛):  

Այժմ, որպես 𝑐1-ի արժեք, վերցնենք 𝑇  վիճականու (1 − 𝛼) մակարդակով 

քանորդիչը, որը բավարարում է հետևյալ (տե՛ս (9.5)) պայմանը` 

𝔾𝑇(𝑐1) ≤ 1 − 𝛼 < 𝔾
𝑇(𝑐1 + 0), 

որտեղ  𝔾𝑇(𝑥) = P0(𝑇 < 𝑥): 

Այս պայմանը համարժեք է հետևյալ անհավասարությանը                

(B(𝑐 ; 𝑛, θ0) = 𝔾𝑇(𝑐))` 

P0(𝑇 > 𝑐1) < 𝛼 ≤ P0(𝑇 ≥ 𝑐1) (1 − B(𝑐1 + 1; 𝑛, θ0) < 𝛼 ≤ 1 − B(𝑐1; 𝑛, θ0)) 

 

կամ  

𝛼′′ = ∑ 𝐶𝑛
𝑚 θ0

𝑚 (1 − θ0)
𝑛−𝑚

𝑛

𝑚=𝑐1+1

<  𝛼 ≤  ∑ 𝐶𝑛
𝑚 θ0

𝑚 (1 − θ0)
𝑛−𝑚

𝑛

𝑚=𝑐1

= 𝛼′ ∶ 

 

 

Եթե 𝛼′ = 𝛼, ապա 𝛼 չափ ունեցող 𝒳1𝛼 = {𝐱 ∈ 𝒳
𝑛:  𝑛𝐱̅ ≥ 𝑐1(𝛼)} կրիտի-

կական տիրույթով Նեյման – Պիրսոնի հայտանիշը ոչ ռանդոմիզացված է, 

ընդ որում I սեռի սխալի հավանականությունը կլինի հավասար 
 

𝛼𝜑(𝜃0) = P0(𝑇 ≥ 𝑐1(𝛼) ) =  𝛼
′ = 𝛼, 

իսկ հզորությունը՝ 

𝑊𝜑(θ1) = P1( 𝑇 ≥ 𝑐1(𝛼))  = ∑ 𝐶𝑛
𝑚 θ1

𝑚 (1 − θ1)
𝑛−𝑚

𝑛

𝑚=𝑐1(𝛼)

∶ 

 

𝛼′ > 𝛼 դեպքը նշանակում է, որ հայտանիշի 𝛼′ չափը (I սեռի սխալի  

հավանականությունը) մեծ է 𝛼-ից: Որպեսզի ստանանք առավել հզոր 

հայտանիշը, որի չափը լինի ճշգրիտ հավասար 𝛼-ին, հայտանիշը պետք է 

ռանդոմիզացվի: Նշանակենք՝ 



§ 9.2.  Նեյման – Պիրսոնի ճշմարտանմանության  

հարաբերության հայտանիշի սահմանային հատկությունները 
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𝑞0 = P0(𝑇  = 𝑐1(𝛼)) =  𝐶𝑛
𝑐1(𝛼) θ0

𝑐1(𝛼)(1 − θ0)
𝑛 − 𝑐1(𝛼), 

և սահմանենք հետևյալ կրիտիկական ֆունկցիան`  
 

𝜑∗(𝐱 ) = {

1, եթե   𝑇 > 𝑐1(𝛼)    

𝜀𝛼 =
𝑞0 + 𝛼 − 𝛼

′

𝑞0
, եթե 

0, եթե  𝑇 < 𝑐1(𝛼)     

𝑇 = 𝑐1(𝛼) : 

 

Այսպիսով, ℍ0  վարկածը կհերքվի, երբ 𝑇 > 𝑐1(𝛼), և չի հերքվի, երբ 

𝑇 < 𝑐1(𝛼): 𝑇 = 𝑐1(𝛼) դեպքում ℍ0 վարկածը հերքվում է 𝜀𝛼 հավանակա-

նությամբ և չի հերքվում 1 − 𝜀𝛼 հավանականությամբ: 𝜑∗(𝐱) կրիտիկական 

ֆունկցիայով հայտանիշի I սեռի սխալի հավանականությունը կլինի 

հավասար  

𝛼𝜑∗(θ0) = E0[𝜑
∗(𝐗)] = P0(𝑇 > 𝑐1(𝛼)) + 𝜀𝛼P0(𝑇 = 𝑐1(𝛼)) = 

 = 𝛼′ − 𝑞0 +
𝑞0 + 𝛼 − 𝛼

′

𝑞0
 𝑞0 =  𝛼 , 

իսկ հզորությունը`  

 𝑊𝜑∗(θ1) = E1[𝜑
∗(𝐗)] =

= ∑ 𝐶𝑛
𝑚θ1

𝑚(1 − θ1)
𝑛−𝑚 +

𝑛

𝑚=𝑐1(𝛼)+1

+ (𝑞0 + 𝛼 − 𝛼
′) (
θ1
θ0
)
𝑐1(𝛼)

(
1 − θ1
1 − θ0

)

𝑛 − 𝑐1(𝛼)

∶ 

            

       § 9.2.  Նեյման – Պիրսոնի ճշմարտանմանության  

         հարաբերության հայտանիշի սահմանային  

         հատկությունները  

 

Պարզության համար կդիտարկենք ոչ ռանդոմիզացված դեպքը, 

այսինքն՝ երբ ℍ0 : P = P0 վարկածն ընդդեմ ℍ1 : P = P1 երկընտրանքայինի 

ստուգման համար կիրառվող Λ = Λ(𝐗)  ճշմարտանմանության հարաբե-

րության վիճականու բաշխումն անընդհատ է: Այդ դեպքում 𝜑∗(𝐱) կրի-

տիկական ֆունկցիան կունենա հետևյալ տեսքը՝ 



ԳԼՈՒԽ 9. ՊԱՐԱՄԵՏՐԱԿԱՆ ՎԱՐԿԱԾՆԵՐ 

32 

 𝜑∗(𝐱) = {
1,   եթե  𝜆 ≥ 𝑐𝛼  

0,   եթե  𝜆 < 𝑐𝛼  
:          (9.8)   

 

Եթե Λ վիճականու G𝑖
Λ(𝐵) = P𝑖(Λ ∈ 𝐵), 𝑖 = 0, 1, 𝐵 ∈ ℬ(ℛ+) բաշխումնե-

րի ճշգրիտ տեսքը հայտնի է, ապա անմիջապես գտնվում են ինչպես II 

սեռի սխալի հավանականությունը՝ 

𝛽𝜑∗(P1) = 1 −  𝑊𝜑∗(P1) = P1(Λ
 < 𝑐𝛼), 

այնպես էլ 𝑐𝛼 կրիտիկական եզրը, որի միջոցով, օգտվելով Նեյման – Պիր-

սոնի թեորեմից, ստուգվում են վերը նշված վարկածները: Այսպիսով, 

P0(Λ > 𝑐) = 𝛼 

հավասարումը լուծվում է ըստ 𝑐-ի, իսկ II սեռի սխալի հավանականու-

թյունը կլինի` 

𝛽𝜑∗(P1) = P1(Λ < 𝑐𝛼): 

Հակառակ դեպքում, այդ խնդիրը լուծելու համար կիրառվում է 

ասիմպտոտիկ մոտեցումը (տե՛ս Ивченко, Медведев [4]): 

Կասենք, որ հայտանիշն ունի ասիմպտոտիկ 𝛂 չափ, եթե 

lim
𝑛→∞

𝛼𝜑(P0) = lim
𝑛→∞

E0[𝜑(𝐗)] =𝛼: 

       Այն  𝑐𝛼(𝑛) թիվը, որի դեպքում մեծ 𝑛-երի համար  

P0(Λ > 𝑐𝛼(𝑛)) ≈ 𝛼, 

կոչվում է Λ վիճականու ասիմպտոտիկ կրիտիկական արժեք (կամ 

ասիմպտոտիկ կրիտիկական եզր): 

       Թեորեմ 9.2: Նեյման - Պիրսոնի թեորեմի օգնությամբ կառուցված 

𝜑∗(𝐱) կրիտիկական ֆունկցիայով (տե՛ս (9.8)-ը) ոչ ռանդոմիզացված 

հայտանիշը բավարարում է հետևյալ հատկությունները՝ 

1. այն ունի ասիմպտոտիկ  𝜶 չափ, որին համապատասխանող 𝑐𝛼(𝑛) 

ասիմպտոտիկ կրիտիկական եզրը որոշվում է հետևյալ բանաձևից՝ 

𝑐𝛼(𝑛) = exp {𝑛𝜇0 + 𝑧𝛼𝜎0√𝑛} (Φ(𝑧𝛼) = 1 − 𝛼),                  (9.9) 

որտեղ  𝜇0 = E0[ln 𝜆(𝑋1)], 𝜎0
2 = var0[ln 𝜆(𝑋1)], 
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       2. հայտանիշի II սեռի սխալի հավանականությունը մեծ 𝑛-երի դեպ-

քում ներկայացվում է 

𝛽𝜑∗(P1) = P1(Λ
 < 𝑐𝛼(𝑛)) ↝ Φ(

𝜇0 − 𝜇1
𝜎1

√𝑛  + 𝑧𝛼
𝜎0
𝜎1
)             (9.10) 

տեսքով,  որտեղ   𝜇1 = E1[ln 𝜆(𝑋1)],    𝜎1
2 = var1[ln 𝜆(𝑋1)], 

3.  𝜑∗ հայտանիշն ունակ է, այսինքն՝ 

lim
𝑛→+∞

𝑊𝜑∗(P1) = 1: 

        Թեորեմն ապացուցելու համար անհրաժեշտ է հետևյալ լեմման՝  

        Լեմմա 9.1: P0 և  P1 բաշխումների 𝑓0 (𝑥) և 𝑓1(𝑥) խտության ֆունկ-

ցիաները բավարարում են հետևյալ անհավասարությանը՝ 

 ∫ 𝑓0 (𝑥) ln 𝑓0 (𝑥) 𝑑𝑥 ≥ ∫𝑓0 (𝑥) ln 𝑓1 (𝑥) 𝑑𝑥 ∶                     (9.11) 

Ա պ ա ց ու ց ու մ: Ապացուցենք (9.11)-ին համարժեք 

∫𝑓0 (𝑥) ln
𝑓1(𝑥)

𝑓0 (𝑥)
 𝑑𝑥 ≤  0 

անհավասարությունը: Օգտվելով  ln(1 + 𝑥) ≤ 𝑥 (երբ 𝑥 > −1) անհավա-

սարությունից, որտեղ հավասարության նշանը տեղի ունի միայն, երբ 

𝑥 = 0, կստանանք՝ 

ln
𝑓1(𝑥)

𝑓0 (𝑥)
= ln(1 + (

𝑓1(𝑥)

𝑓0 (𝑥)
− 1)) ≤ 

𝑓1(𝑥)

𝑓0 (𝑥)
− 1: 

Այսպիսով, ունենք` 

∫𝑓0 (𝑥) ln
𝑓1(𝑥)

𝑓0 (𝑥)
𝑑𝑥 ≤ 

 

≤ ∫𝑓0 (𝑥)(
𝑓1(𝑥)

𝑓0 (𝑥)
 − 1)𝑑𝑥 = ∫𝑓1(𝑥)𝑑𝑥 −∫𝑓0(𝑥)𝑑𝑥 = 0 ∶     

Թ ե ո ր ե մ 9.2-ի ա պ ա ց ու ց ու մ: Գտնենք 𝜑∗(𝐱) կրիտիկական 

ֆունկցիայով ոչ ռանդոմիզացված հայտանիշի I և II սեռի սխալի հավա-

նականությունները` 
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𝛼𝜑∗(P0) = P0(Λ
 > 𝑐𝛼(𝑛))  և  𝛽𝜑∗(P1) = P1(Λ

 < 𝑐𝛼(𝑛)): 

 

Նշանակենք՝ 

 𝒮𝑛 = lnΛ
 = ln ∏

𝑓1(𝑋𝑖)

𝑓0 (𝑋𝑖)

𝑛

𝑖=1

=∑𝑍𝑖  ,

𝑛

𝑖=1

  𝑍𝑖 = ln
𝑓1(𝑋𝑖)

𝑓0 (𝑋𝑖)
,   𝑖 = 1,… , 𝑛:  

Ենթադրենք՝ վերջավոր են հետևյալ մոմենտները՝  

𝜇𝑖 = E𝑖[𝑍1] = ∫𝑓𝑖(𝑥) ln
𝑓1(𝑥)

𝑓0 (𝑥)
 𝑑𝑥 < ∞,   𝜎𝑖

2 = var𝑖[𝑍1] < ∞,   𝑖 = 0, 1:  

Համաձայն Չեբիշևի մեծ թվերի օրենքի՝ այստեղից հետևում են զուգամի-

տությունները՝ 

1

𝑛
𝒮𝑛

P0
→  𝜇0,    

1

𝑛
𝒮𝑛

P1
→  𝜇1,   երբ 𝑛 → ∞, 

այսինքն՝ մեծ 𝑛-ի համար  
1

𝑛
𝒮𝑛 պատահական մեծության P0 բաշխումը «կու-

տակված» է  𝜇0 կետի շրջակայքում, իսկ P1 բաշխումը՝ 𝜇1 կետի շրջակայքում, 

ընդ որում, համաձայն լեմմա  9.1-ի,  𝜇0 < 0,  𝜇1 > 0 (𝜎𝑖
2 > 0),  P0 ≠ P1: 

Այժմ ℍ𝑖, 𝑖 = 0, 1 վարկածը բավարարվելու դեպքում կիրառելով       

ԿՍԹ-ը՝ կստանանք` 

𝒮𝑛 − 𝑛𝜇𝑖

𝜎𝑖√𝑛

𝑑
→  ℕ(0, 1) ,   𝑛 → ∞,  

 

որտեղից մեծ 𝑛-ի համար կունենանք հետևյալ մոտարկումները` 

𝛼𝜑∗(P0) = P0(Λ ≥ 𝑐) = P0(𝒮𝑛 ≥ ln 𝑐) = P0 (
𝒮𝑛 − 𝑛𝜇0

𝜎0√𝑛
 ≥
ln 𝑐 − 𝑛𝜇0

𝜎0√𝑛
 )  ↝ 

 

↝ 1−Φ(
ln 𝑐 − 𝑛𝜇0

𝜎0√𝑛
):                                      (9.12) 

 

 

Համարելով  1 − Φ(
ln 𝑐 − 𝑛𝜇0

𝜎0√𝑛
) = 𝛼,այսինքն՝   

ln 𝑐 − 𝑛𝜇0

𝜎0√𝑛
= 𝑧𝛼 , 

 

 կստանանք 

𝑐 = 𝑐𝛼(𝑛) = exp {𝑛𝜇0 + 𝑧𝛼𝜎0√𝑛 }: 
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Հետևաբար, հայտանիշն ունի 𝑐𝛼(𝑛) ասիմպտոտիկ կրիտիկական եզրով 

ասիմպտոտիկ 𝛂 չափ: 

Այժմ, մեծ 𝑛-երի դեպքում գտնենք 𝑐𝛼(𝑛) եզրին համապատասխանող 

II սեռի սխալի հավանականությունը՝ 

𝛽𝜑∗(P1) = P1(𝒮𝑛 < ln 𝑐𝛼(𝑛)) =  

 

= P1 (
𝒮𝑛 − 𝑛𝜇1

𝜎1√𝑛
 <  

𝜇0 − 𝜇1
𝜎1

 √𝑛  + 𝑧𝛼
𝜎0
𝜎1
 ) ↝ Φ(

𝜇0 − 𝜇1
𝜎1

 √𝑛  + 𝑧𝛼
𝜎0
𝜎1
 ): 

Մյուս կողմից՝ այստեղից հետևում է, որ 𝑊𝜑∗(P1) = 1 − 𝛽𝜑∗(P1) → 1, 

երբ  𝑛 → ∞, այսինքն՝ հայտանիշն ունակ է:       

Օրինակ 9.3: Դիցուք 𝐗 ~ 𝔹er (θ) նմուշ է θ «հաջողության» հավանա-

կանությամբ Բեռնուլիի բաշխումների դասից: Դիտարկենք ℍ0 : θ = θ0 

վարկածն ընդդեմ ℍ1 : θ = θ1 երկընտրանքայինի ստուգման խնդիրը, 

որտեղ θ1 > θ0: 

Պահանջվում է՝ 

ա) կառուցել այդ վարկածները ստուգող ասիմպտոտիկ 𝜶 չափ ունե-

ցող հայտանիշը և գտնել II սեռի սխալի հավանականությունը, 

բ) գտնել 𝐗 նմուշի այն նվազագույն 𝒏𝟎 ծավալը, որի դեպքում I և II 

սեռի սխալի հավանականությունները լինեն հավասար համապատաս-

խանաբար 𝛼 և 𝛽 թվերին:  

𝐗 նմուշի մեծ 𝑛 ծավալի դեպքում, համաձայնՄուավր –Լապլասի 

ինտեգրալային սահմանային թեորեմի, 𝑐𝛼(𝑛) ասիմպտոտիկ կրիտիկա-

կան եզրը (տե՛ս օրինակ՝ 9.2 -ը) գտնվում է հետևյալ պայմանից`  

𝛼𝜑(θ0) = P0(∑𝑋𝑖

𝑛

𝑖=1

≥ cα(𝑛)) = P0 (
𝑛(𝐗̅ − θ0)

√𝑛θ0(1 − θ0)
 ≥  

cα(𝑛) − 𝑛θ0

√𝑛θ0(1 − θ0)
) ↝ 

↝ 1−Φ(
cα(𝑛) − 𝑛θ0

√𝑛θ0(1 − θ0)
) = 𝛼,             

 

որտեղից, համեմատելով (9.9)-ի և (9.12)-ի հետ, ստանում ենք`  
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cα(𝑛) = 𝑛θ0 + 𝑧𝛼  √𝑛θ0(1 − θ0): 

Այստեղից՝ 𝛼 չափ ունեցող ասիմպտոտիկ կրիտիկական տիրույթը կլինի` 
 

𝒳1𝛼 = {𝐱 ∶  
𝐱̅ − θ0

√θ0(1 − θ0)
√𝑛  ≥ 𝑧𝛼}: 

Այժմ գտնենք մեծ 𝑛-երի դեպքում II սեռի սխալի հավանականությունը` 

𝛽𝜑(θ1) = P1(∑𝑋𝑖

𝑛

𝑖=1

< cα(𝑛))  ↝ Φ(
cα(𝑛) − 𝑛θ1

√𝑛θ1(1 − θ1)
) = 

= Φ(
θ0 − θ1

√θ1(1 − θ1)
 √𝑛  + 𝑧𝛼√

θ0(1 − θ0)

θ1(1 − θ1)
) 

 

(համեմատել (9.10)-ի հետ): Այստեղից՝ 

 Φ(
cα(𝑛) − 𝑛θ1

√𝑛θ1(1 − θ1)
) = 𝛽 

պայմանից, կստանանք`  

cα(𝑛) = 𝑛θ0 + 𝑧𝛼  √𝑛θ0(1 − θ0)  =  𝑛θ1 − 𝑧𝛽 √𝑛θ1(1 − θ1) , 

որտեղից՝ նվազագույն 𝐧𝟎 ծավալը, որի դեպքում I և II սեռի սխալի հավա-

նականությունները լինեն համապատասխանաբար հավասար 𝛼 և 𝛽 թվե-

րին, կլինի` 

𝑛0 = [(
𝑧𝛼  √θ0(1 − θ0)  + 𝑧𝛽 √θ1(1 − θ1) 

θ1 − θ0
)

2

]  + 1  

([𝑎]­ն 𝑎 թվի ամբողջ մասն է):  

Խնդիրներ 
 

9.1. Դիցուք 𝐗 ~ ℕ(𝑚, θ2): Ստուգվում է ℍ0 : θ
2 = θ0

2 վարկածն ընդդեմ 

ℍ1 : θ
2 = θ1

2  երկընտրանքայինի, եթե  θ1
2 > θ0

2 (θ1
2 < θ0

2):  
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ա) Կառուցել այդ վարկածները ստուգող 𝛼 չափ ունեցող առավել հզոր 

Նեյման − Պիրսոնի հայտանիշը,  

բ) գտնել I և II սեռի սխալի հավանականությունները,  

գ) ստուգել հայտանիշի անշեղությունը: 
 

Պատասխան`  𝟏. (𝛉𝟏
𝟐 > 𝛉𝟎

𝟐), ա)  𝒳1𝛼 = {𝐱 ∶  
1

θ0
2  ∑ (𝑥𝑖 −𝑚)

2𝑛
𝑖=1 ≥ 𝜒𝛼

2(𝑛)} ,

բ)  𝛼𝜑(𝜃0) = 𝛼 ,  𝛽𝜑(θ1) = 𝐻𝑛 (
θ0
2

θ1
2  𝜒𝛼

2(𝑛)),  

   գ)  հայտանիշն անշեղ է:  

𝟐. (𝛉𝟏
𝟐 < 𝛉𝟎

𝟐),  ա)  𝒳1𝛼 = {𝐱
 ∶
1

θ0
2  ∑(𝑥𝑖 −𝑚)

2 ≤ 𝜒1 − 𝛼
2 (𝑛)

𝑛

𝑖=1

} , 

բ) 𝛼𝜑(θ0) =  𝛼,   𝛽𝜑(θ1) = 1 −  H𝑛 (
θ0
2

θ1
2 ∙ 𝜒1−𝛼

2 (𝑛)) ,   գ) հայտանիշն անշեղ է: 

9.2. Դիցուք 𝐗 ~ ℿ(θ), θ > 0 նմուշ է Պուասոնի բաշխումից: Կառուցել 

ℍ0 : θ = θ0 վարկածն ընդդեմ ℍ1 : θ = θ1 երկընտրանքայինի ստուգող, 𝛼 

չափ ունեցող Նեյման − Պիրսոնի հայտանիշը (θ1 > θ0): Գտնել հայտա-

նիշի հզորությունը: 

   Ցուցում՝ տե՛ս օրինակ՝ 9.2 -ը:  

Պատասխան՝ 𝛼 չափ ունեցող Նեյման – Պիրսոնի հայտանիշի կրիտիկական 

տիրույթն է 𝒳1𝛼 = {𝐱 ∈ 𝒳
𝑛: 𝑇 = 𝑛𝐱̅  ≥ 𝑐1(𝛼)}, որտեղ  𝑐1 = 𝑐1(𝛼) -ն բավարարում է 

𝛼′′ = 1 − Πθ0(𝑐1 + 1) < 𝛼 ≤ 1 − Πθ0(𝑐1) = 𝛼
′ 

պայմանը:  𝜶′ = 𝜶 դեպքում այն կլինի ոչ ռանդոմիզացված, 

𝑊𝜑∗(θ1) = 1 − Πθ1(𝑐1): 

 𝜶 < 𝜶′  դեպքում հայտանիշը ռանդոմիզացված է 

 𝜑∗(𝐱) = {

1,         եթե  𝑇 > 𝑐1

𝜀𝛼 =
𝛼− 𝛼′′

𝛼′− 𝛼′′
,     եթե 

0,         եթե  𝑇  < 𝑐1

𝑇  = 𝑐1  

կրիտիկական ֆունկցիայով, հզորությունը՝ 

 𝑊𝜑∗(θ1) = (1 − Πθ1(𝑐1 + 1)) + (𝛼 − 𝛼
′′) (

θ1
θ0
)
𝑐1

𝑒−𝑛(θ1−θ0): 

9.3. Դիցուք 𝐗 ~ ℿ(θ), θ > 0: Կառուցել ℍ0 : θ = θ0 վարկածն ընդդեմ 

ℍ1 : θ = θ1 երկընտրանքայինի ստուգող ասիմպտոտիկ 𝛼 չափ ունեցող 
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հայտանիշը և գտնել դրա հզորությունը, երբ θ1 > θ0: Ի՞նչ տեղի կունենա 

θ1 < θ0 դեպքում: 

Ցուցում՝ տե՛ս օրինակ՝ 9.3 -ը: 

Պատասխան՝   𝟏. 𝛉𝟏 > 𝛉𝟎՝ 𝒳1𝛼 = {𝐱 ∶  
𝐱̅−𝜃0

√θ0
 √𝑛  ≥  𝑧𝛼} ,𝑊𝜑(𝜃1) ↝ Φ(

θ1−θ0

√θ1
 √𝑛 −

 −𝑧𝛼 √
θ0

θ1
)  մեծ 𝑛-ի դեպքում,  

𝟐. 𝛉𝟏 < 𝛉𝟎՝ 𝒳1𝛼  = {𝐱 ∶  
𝐱̅−θ0

√θ0
 √𝑛  ≤ − 𝑧𝛼} ,  𝑊𝜑(𝜃1) ↝ Φ(

θ0−θ1

√θ1
 √𝑛  −  𝑧𝛼  √

θ0

θ1
):  

 

       § 9.3. Միակողմանի բարդ վարկածների ստուգում  

 

Մոնոտոն ճշմարտանմանության հարաբերությունով բաշխումներ 

Դիցուք 𝐗 ~ Pθ ∈ 𝒫 նմուշը համապատասխանում է բաշխումների 

𝒫 = {Pθ, θ ∈ Θ ⊂ ℛ} դասից Pθ բաշխմանը: Դիտարկենք վարկածների 

ստուգման խնդիրը, երբ ℍ0 և ℍ1 վարկածները միակողմանի բարդ վար-

կածներ են,  

ℍ0
−: θ ≤ θ0  ընդդեմ  ℍ1

+: θ > θ0  կամ  ℍ0
+: θ ≥ θ0  ընդդեմ  ℍ1

−: θ < θ0: 

 Կասենք, որ բաշխումների 𝒫 դասն ունի մոնոտոն ճշմարտանմա-

նության հարաբերություն, եթե գոյություն ունի այնպիսի 𝑇(𝐱) ֆունկցիա 

(𝐱 ∈ 𝒳𝑛), որ բոլոր θ, θ′ ∈ Θ-ից պարամետրերի համար (θ > θ′)՝ 

𝜆(𝐱) =
𝑓θ(𝐱)

 fθ′(𝐱)
 (
𝑝θ(𝐱)

𝑝θ′(𝐱)
): 

Ճշմարտանմանության հարաբերությունը 𝑇(𝐱)-ի նկատմամբ մոնոտոն 

ֆունկցիա է (որոշակիության համար կհամարենք, որ 𝜆(𝐱) ­ը  𝑇(𝐱)­ի 

նկատմամբ մոնոտոն աճող ֆունկցիա է): Սահմանումից հետևում է, որ 

կամայական  𝑐 > 0 և θ > θ′ թվերի համար, ճիշտ է  

(𝐱 ∶  𝜆(𝐱) ≥ 𝑐)  ⇔ (𝐱 ∶  𝑇(𝐱) ≥ 𝑐1) 

համարժեքությունը, որտեղ  𝑐1 = 𝑐1(𝑛, 𝑐, 𝜃, 𝜃
′):  
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Օրինակ 9.4: Դիցուք 𝐗 ~ ℕ(θ, σ2), θ ∈ ℛ: Ստուգենք, ունի՞ արդյոք, այդ 

դասը մոնոտոն ճշմարտանմանության հարաբերություն, թե` ոչ: 

Ցանկացած θ, θ′ ∈ ℛ-ից (θ > θ′) պարամետրերի համար ճշմարտա-

նմանության հարաբերությունը կլինի հավասար (տե՛ս օրինակ 9.1-ը) 

𝜆(𝐱)  =  
𝑓θ(𝐱)

𝑓θ′(𝐱)
= exp {

𝑛𝐱̅

σ2
(θ − θ′) −

𝑛

2σ2
(θ2 − (θ′)2)} , 

այնպես, որ 

(𝐱 ∶  𝜆(𝐱) ≥ 𝑐) ⇔ (𝐱 ∶  𝐱̅ ≥ 𝑐1),    𝑐1 = 
1

2
(θ + θ′) +

σ2 ln c

𝑛(θ − θ′)
∶ 

Հետևաբար, բաշխումների ℕ(θ, σ2) դասն ունի մոնոտոն ճշմարտա-

նմանության հարաբերություն, որտեղ 𝑇(𝐱) = 𝐱̅:    

Մոնոտոն ճշմարտանմանության հարաբերություն ունեցող դասերի 

համար ճիշտ է հավասարաչափ առավել հզոր (ՀԱՀ) հայտանիշի գոյու-

թյան վերաբերյալ հետևյալ պնդումը (տե՛ս Боровков [1])՝ 

Թեորեմ 9.3: Դիցուք 𝐗  ~ Pθ ∈ 𝒫 և 𝒫 դասն ունի մոնոտոն ճշմարտա-

նմանության հարաբերություն ըստ 𝑇(𝐱) ֆունկցիայի: Այդ դեպքում՝ 

1. 𝕂𝛼 = {𝛿: 𝛼𝜑(θ) ≤ 𝛼, θ ≤ θ0} հայտանիշների դասում գոյություն 

ունի  ℍ0
−: θ ≤ θ0 վարկածն ընդդեմ  ℍ1

+: θ > θ0 երկընտրանքայինը 

ստուգող 

    𝜑∗(𝐱) = {

1, եթե  𝑇(𝐱) > 𝑐1 

𝜀, եթե  𝑇(𝐱) = 𝑐1 

0, եթե  𝑇(𝐱) < 𝑐1 

            (9.13) 

կրիտիկական ֆունկցիայով օպտիմալ (ՀԱՀ) ճշմարտանմանության հա-

րաբերության հայտանիշ (ՃՀՀ), որտեղ 𝑐1 ∶= 𝑐1(𝛼) ∈ ℛ և 𝜀 ∶= 𝜀(𝛼) թվերը 

(0 < 𝜀 < 1) որոշվում են հետևյալ պայմանից՝ 

E0[𝜑
∗(𝐗)] = P0(𝑇(𝐗) > 𝑐1) + 𝜀P0(𝑇(𝐗) = 𝑐1) = 𝛼            (9.14) 

(P0 ∶= Pθ0 ,   E0 ∶= EP0 ):                                                 
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2.  𝑊𝜑∗(θ) = Eθ[𝜑
∗(𝐗)] հզորության ֆունկցիան բոլոր θ-ների համար 

𝑊𝜑∗(θ) < 1 պայմանը բավարարող խիստ մոնոտոն աճող ֆունկցիա է : 

3. Բոլոր θ′ ∈ Θ համար ℍ0
′  : θ ≤ θ′վարկածն ընդդեմ ℍ1

′  : θ > θ′ 

երկընտրանքայինի ստուգող (9.13) կրիտիկական ֆունկցիայով ճշմար-

տանմանության հարաբերության հայտանիշն օպտիմալ է 𝕂′ ∶= 𝕂𝜶′ դա-

սում, որտեղ  𝛼′ = 𝑊𝜑∗(θ
′): 

 4. 𝝋∗ կրիտիկական ֆունկցիայով Ճշմարտանմանության հարաբե-

րության հայտանիշը կամայական θ < θ0 համար մինիմալացնում է 𝕂𝛼 

դասում  𝑊𝜑∗(θ) = Eθ[𝜑
∗(𝐗)]  ֆունկցիան (I սեռի սխալը): 

       Ա պ ա ց ու ց ու մ (1 – 3): Նախ դիտարկենք ℍ0 : θ = θ0 վարկածն 

ընդդեմ ℍ1 : θ = θ1 (θ1 > θ0)  երկընտրանքայինի ստուգման խնդիրը: 

Համաձայն Նեյման – Պիրսոնի թեորեմի՝ այդ վարկածները ստուգող առա-

վել հզոր ՃՀՀ -ն ունի (9.13) տեսքը, որտեղ λ(𝐱) > 𝑐𝛼  պայմանը փոխարին-

վում է 𝑇(𝐱) > 𝑐1  պայմանով, իսկ 𝑐1 = 𝑐1(𝛼) և 𝜀 = 𝜀𝛼 թվերը որոշվում են 

(9.14) պայմանից: Քանի որ 𝑐1  և 𝜀 թվերը (9.14) հավասարությունից 

որոշվում են միարժեք ձևով, ապա θ′′ > θ′ պայմանը բավարարող ցանկա-

ցած θ′, θ′′ ∈ Θ արժեքների համար ℍ0
′  : θ = θ′ վարկածն ընդդեմ ℍ1

′ : θ = θ′′ 

երկընտրանքայինի ստուգող 𝜑∗ հայտանիշը կլինի առավել հզոր  𝕂′ =𝕂𝜶′ 

դասում, որտեղ 𝛼′ ∶= 𝑊𝜑∗(θ
′) = Eθ′[𝜑

∗(𝐗)]: Այստեղից և Նեյման – 

Պիրսոնի թեորեմից (տե՛ս անշեղության պայմանը) հետևում է 𝑊𝜑∗(θ
′′) > 

> 𝑊𝜑∗(θ
′) = 𝛼′ պայմանը, այնպես որ 𝑊𝜑∗(θ) ֆունկցիան խիստ մոնոտոն 

աճող է: Հետևաբար՝ կստանանք՝ 

𝑊𝜑∗(θ) = Eθ[𝜑
∗(𝐗)] ≤ 𝛼, երբ  θ ≤ θ0:    (9.15) 

(9.15) պայմանը բավարարող հայտանիշների 𝕂𝛼 դասը պատկանում է  

𝕂𝛼
0 = {𝛿: E0[𝜑(𝐗)] = 𝛼} 

դասին: Սակայն, քանի որ ՃՀՀ-ը մաքսիմալացնում է 𝑊𝜑(θ1) ֆունկցիան 

𝕂𝛼
0  դասում  (sup 𝜑∈𝕂𝛼0 𝑊𝜑(θ1)),  ապա այն կմաքսիմալացնի 𝑊𝜑(θ1) հզո-

րությունը նաև 𝕂𝛼 դասում: Մնում է միայն նկատել, որ առավել հզոր 

𝜑∗ՃՀՀ-ը կախում չունի θ1-ի ընտրությունից, այնպես որ այն կլինի հավա-
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սարաչափ առավել հզոր բոլոր θ > θ0-ների համար: Այսպիսով, 1 – 3 

պնդումներն ապացուցվեցին:  

4-րդ պնդումը հետևում է 1 – 3 պնդումներից, եթե այն կիրառվի         

ℍ0
+: θ ≥ θ0  վարկածն ընդդեմ ℍ1

−: θ < θ0 երկընտրանքայինի վարկածը 

ստուգման խնդրի համար: Այդ վարկածները ստուգող 𝕂̃1−𝛼 =

= {𝛿:̃ Eθ[𝜑̃(𝐗)]  ≤ 1 − 𝛼} դասում հավասարաչափ առավել հզոր 

հայտանիշը կունենա 𝜑̃∗ = 1 − 𝜑∗ տեսքը, իսկ 1 −𝑊𝜑∗(θ) = Eθ[𝜑̃
∗(𝑿)] 

հզորության ֆունկցիան բոլոր θ < θ0 համար կլինի մաքսիմալ, այսինքն՝ 

𝑊𝜑∗(θ)  ֆունկցիան կլինի մինիմալ:      

Դիտողություն 9.1: Մոնոտոն ճշմարտանմանության հարաբերություն 

ունեցող  𝒫 = {Pθ, θ ∈ Θ ⊂ ℛ} դասի համար ℍ0
+: θ ≥ θ0 վարկածն ընդդեմ 

ℍ1
−: θ < θ0 երկընտրանքայինի ստուգող հավասարաչափ առավել հզոր 

հայտանիշի կրիտիկական ֆունկցիան ունի  

𝜑∗(𝐱) = {

1,   եթե   𝑇(𝐱) < 𝑐1 

𝜀,   եթե   𝑇(𝐱) = 𝑐1 

0,   եթե   𝑇(𝐱) > 𝑐1 
     (9.16)  

տեսքը, որտեղ 

   E0[𝜑
∗(𝐗)] = P0(𝑇(𝐗) < 𝑐1) + 𝜀P0(𝑇(𝐗) = 𝑐1) = 𝛼,       (9.17) 

(տե՛ս թեորեմ 9.3-ի 4-րդ կետը): 

Դիտողություն 9.2: ℍ0 : θ = θ0 վարկածն ընդդեմ  ℍ1
+: θ > θ0 ( կամ ℍ1

−: 

θ < θ0) երկընտրանքայինը ստուգող հավասարաչափ առավել հզոր հայ-

տանիշն ունի նույն՝ (9.13) - (9.14) տեսքը (համապատասխանաբար, 

(9.16) - (9.17) տեսքը): 

Ցուցչային (Էքսպոնենտական) դասեր 

Մոնոտոն ճշմարտանմանության հարաբերություն ունեցող բաշ-

խումների դասի կարևոր մասնավոր դեպքն է  ℰ = {Pθ, θ ∈ Θ ⊂ ℛ}  ցուցչա- 

յին դասը, որի համար Pθ բաշխման 𝑓𝜃(𝑥) խտության ֆունկցիան 

(𝑝𝜃(𝑥) հավանականությունը) ներկայացվում է հետևյալ տեսքով՝  
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𝑓𝜃(𝑥) (𝑝𝜃(𝑥)) = ℎ(𝑥) exp {𝐴(θ)𝑆(𝑥) + 𝐵(θ)},    𝑥 ∈ 𝒳 : 

Իրոք, եթե 𝐗 ~ Pθ ∈ ℰ ցուցչային դասից բաշխմանը համապատաս-

խանող նմուշ է, ապա 𝜆(𝐱) ճշմարտանմանության հարաբերությունը բո-

լոր  θ > θ′-ի համար կներկայացվի  
 

𝜆(𝐱) =
𝑓θ(𝐱)

𝑓θ′(𝐱)
(
𝑝θ(𝐱)

𝑝θ′(𝐱)
) = exp{(𝐴(θ) − 𝐴(θ′))𝑇(𝐱) + 𝑛(𝐵(θ) − 𝐵(θ′))} 

տեսքով,և այն կլինի մոնոտոն կախված  𝑇(𝐱) = ∑ 𝑆(𝑥𝑖)
𝑛
𝑖=1   ֆունկցիայից, 

եթե A(θ)­ն մոնոտոն ֆունկցիա է:  

Այսպիսով, ցուցչային դասերի համար թեորեմ 9.3-ը կընդունի հե-

տևյալ տեսքը՝ 

       Թեորեմ 9.4: Դիցուք  𝐗 ~ Pθ  ∈ ℰ, որտեղ 𝐴(θ)-ն մոնոտոն ֆունկցիա է : 

Այդ դեպքում 𝕂𝛼 դասում գոյություն ունի ℍ0
−: θ ≤ θ0 վարկածն ընդդեմ ℍ1

+: 

θ > θ0 երկընտրանքայինի ստուգող հավասարաչափ առավել հզոր (օպ-

տիմալ) ՃՀՀ, ընդ որում, եթե 𝐴(θ)-ն մոնոտոն աճող ֆունկցիա է, ապա 

հայտանիշն ունի (9.13) տեսքը, իսկ եթե այն մոնոտոն նվազող է՝ (9.16) 

տեսքը: 

Եթե 𝕂𝛼 դասում ստուգվում է ℍ0
+: θ ≥ θ0 վարկածն ընդդեմ  ℍ1

−: θ < θ0 

երկընտրանքայինի, ապա հավասարաչափ առավել հզոր (օպտիմալ)      

ՃՀՀ-ն ունի (9.16) տեսքը, եթե 𝐴(θ) –ն մոնոտոն աճող է, և կունենա (9.13) 

տեսքը, եթե այն մոնոտոն նվազող է : 

Օրինակ 9.5: Դիցուք 𝐗 ~ ℕ(𝑚, θ2) և ստուգվում է ℍ0
− : θ2 ≤ θ0

2 վար-

կածն ընդդեմ ℍ1
+: θ2 > θ0

2 երկընտրանքայինի:  

Քանի որ ℕ(𝑚, θ2) դասը ցուցչային դաս է՝ 
 

 𝑓θ(𝐱) = (2𝜋)
−𝑛 2⁄ exp {−

1

2θ2
 ∑(𝑥𝑖 −𝑚)

2 − 
𝑛

2
 ln θ2

𝑛

𝑖=1

}, 

 

որտեղ  𝑇(𝐱)  = ∑ (𝑥𝑖 −𝑚)
2,𝑛

𝑖=1  իսկ  𝐴(θ) = −
1

2θ2
 աճող ֆունկցիա է, ապա α 

չափ ունեցող հավասարաչափ առավել հզոր (օպտիմալ) հայտանիշը (որը 
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ոչ ռանդոմիզացված է), տրվում է 𝒳1𝛼 = {𝐱
 : 𝑇(𝐱) ≥ 𝑐1} կրիտիկական 

տիրույթի միջոցով: 

𝑐1 = 𝑐1(𝛼) կրիտիկական եզրը գտնելու համար նկատենք, որ                
1

θ2
𝑇(𝐗) ~ ℍ2(𝑛), այնպես որ E0[𝜑

∗(𝐗 )] = P0(𝑇(𝐗
 ) ≥ 𝑐1) = 𝛼 պայմանից 

կստանանք` 𝑐1 = θ0
2 𝜒𝛼

2(𝑛): 

ℍ0
+: θ2 ≥ θ0

2 վարկածն ընդդեմ ℍ1
−: θ2 < θ0

2 երկընտրանքայինի ստուգ-

ման կրիտիկական տիրույթը, կլինի 𝒳1𝛼 = {𝐱 ∶  𝑇(𝐱
 ) ≤ 𝑐1} բազմությունը, 

որտեղ   𝑐1 = θ0
2 𝜒1−𝛼

2 (𝑛):  

Օրինակ 9.6: Ենթադրենք որոշակի արտադրատեսակ ենթարկվում է 

նմուշային հսկողության, ընդ որում, այդ արտադրատեսակի յուրա-

քանչյուր անդամ, անկախ մյուսներից, θ հավանականությամբ կարող է 

լինել խոտանված: Դիցուք 𝒏 հատ արտադրատեսակ ստուգելուց հետո 

ստացվել է 𝐗 = (𝑋1, … , 𝑋𝑛) նմուշը, որտեղ  𝑋𝑖 = 1, եթե 𝑖-րդ ստուգված 

արտադրատեսակն ունի խոտան և 𝑋𝑖 = 0, եթե այն որակյալ է (այսինքն՝ 

𝐗  ~ 𝔹er (θ) նմուշ է Բեռնուլիի բաշխումից): Պահանջվում է ստուգել ℍ0
+: 

θ ≥ θ0 վարկածն ընդդեմ ℍ1
−: θ < θ0 երկընտրանքայինի, որտեղ θ0-ն 

անորակ արտադրատեսակի «կրիտիկական» (թույլատրելի) թիվն է 

(հետևաբար, եթե ℍ𝟎
+ վարկածն ընդունվի, երբ 𝐗(𝜔0) = 𝐱, ապա արտա-

դրությունը պետք է դադարեցվի):  

Անորակ արտադրանքների  𝑇(𝐗)  = ∑ 𝑋𝑖
𝑛
𝑖=1 ~ 𝔹in (θ, 𝑛) պատահական 

թիվն ունի բինոմական բաշխում: Բեռնուլիի մոդելը ցուցչային է` 
 

 

𝑝θ(𝐱) = Pθ(𝐗 = 𝐱) = θ
𝑇(𝐱)(1 − θ)𝑛 − 𝑇(𝐱) = 

= exp {(ln
θ

1 − θ
)𝑇(𝐱) + 𝑛 ln(1 − θ)}, 

 

որտեղ 𝐴(θ) = ln
θ

1−θ
 աճող ֆունկցիա է: Հետևաբար, գոյություն ունի             

ℍ0
+: θ ≥ θ0 վարկածն ընդդեմ ℍ1

−: θ < θ0 մրցող վարկածի ստուգող, 𝛼 չափ 

ունեցող օպտիմալ (ՀԱՀ) հայտանիշ, որը որոշվում է 𝒳1𝛼 = {𝐱 ∶  𝑇(𝒙) ≤

≤ 𝑐1(𝛼)} կրիտիկաան տիրույթով (𝑐1(𝛼) կրիտիկական եզրը գտնվում է 

ինչպես օրինակ 9. 2 -ում):   
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Խնդիրներ 

 

9.4. Դիցուք 𝐗 ~ ℕ(θ, σ2): Կառուցել` ա) ℍ0
−: θ ≤ θ0 վարկածն ընդդեմ 

ℍ1
+: θ > θ0 և բ) ℍ0

+: θ ≥ θ0 վարկածն ընդդեմ ℍ1
−: θ < θ0 երկընտրան-

քայինի ստուգող 𝛼 չափ ունեցող հավասարաչափ առավել հզոր հայ-

տանիշներ: Գտնել այդ հայտանիշների հզորության ֆունկցիաները և 

ստուգել դրանց ունակությունն ու անշեղությունը: 
 

 

Ցուցում՝  բերել դասը ցուցչային տեսքի, օգտվելով թեորեմ 9.4-ից: 

Պատասխան՝ ա) 𝒳1𝛼 = {𝐱 ∶  
√𝑛

𝜎
(𝐱̅ − θ0) > 𝑧𝛼},  𝑊𝜑(θ) = Φ ( 

θ − θ0

σ
 √𝑛  −  𝑧𝛼), 

բ) 𝒳1𝛼 = {𝐱 ∶  
√𝑛

𝜎
 (𝐱̅ − θ0) < − 𝑧𝛼},  𝑊𝜑(θ) = Φ(

 θ0− θ

σ
 √𝑛  −  𝑧𝛼): 

9.5. 𝐗 ~ 𝔹in (θ, 𝑘) նմուշի միջոցով կառուցել 𝛼 չափ ունեցող 

ասիմպտոտիկ ՀԱՀ հայտանիշներ հետևյալ վարկածները ստուգելու 

համար՝ ա) ℍ0
−: θ ≤ θ0 ընդդեմ ℍ1

+: θ > θ0,  բ) ℍ0
+: θ ≥ θ0 ընդդեմ ℍ1

−: θ < θ0: 
 

Ցուցում՝ տե՛ս օրինակ 9.6-ը:  

Պատասխան՝ ա) 𝒳1𝛼 = {𝐱 ∶  
𝐱̅− 𝑘θ0

√𝑘θ0(1−θ0)
√𝑛  ≥ 𝑧𝛼},  

բ) 𝒳1𝛼 = {𝐱: 
𝐱  ̅ − 𝑘𝜃0

√𝑘θ0(1 − θ0)
√𝑛  ≤ − 𝑧𝛼}: 

𝟗. 𝟔 . Դիցուք 𝐗 ~ ℿ(θ), θ > 0: Կառուցել 𝛼 չափ ունեցող հավասա-

րաչափ առավել հզոր հայտանիշներ հետևյալ վարկածները ստուգելու 

համար՝  ա) ℍ0
−: θ ≤ θ0 ընդդեմ ℍ1

+: θ > θ0 և  բ) ℍ0
+: θ ≥ θ0 ընդդեմ ℍ1

−: 

θ < θ0: 

Ցուցում՝ տե՛ս խնդիր 9.2-ը:  

Պատասխան՝  
 

ա)  𝜑∗(𝐱) = { 

1, եթե  𝑇(𝐱) > 𝑐1(𝛼)                      

𝜀𝛼 =
𝛼− 𝛼′′

𝛼′− 𝛼′′
, եթե  𝑇(𝐱) = 𝑐1(𝛼) ,

0, եթե  𝑇(𝐱)  < 𝑐1(𝛼)                      

 

որտեղ  𝛼′′ ∶=  1 − Π𝑛𝜃0(𝑐1(𝛼) + 1) < 𝛼 ≤  1 − Π𝑛𝜃0(𝑐1(𝛼)) ∶= 𝛼
′,  
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բ) 𝜑∗(𝐱) = { 

1, եթե  𝑇(𝐱) < 𝑐1(𝛼)         
𝛼− 𝛼′′

𝛼′− 𝛼′′
, եթե  𝑇(𝐱) = 𝑐1(𝛼) ,

0, եթե  𝑇(𝐱)  > 𝑐1(𝛼)          

 

որտեղ  𝛼′′ = Π𝑛𝜃0(𝑐1(𝛼)) <  𝛼 ≤ Π𝑛𝜃0(𝑐1(𝛼) + 1)  = 𝛼
′ ∶ 

9.7. Նախորդ խնդրի պայմաններում կառուցել ասիմպտոտիկ 𝛼 չափ 

ունեցող հավասարաչափ առավել հզոր հայտանիշները: 
 

Ցուցում՝ տե՛ս խնդիր 9.3-ը:  

Պատասխան՝  

ա) 𝒳1𝛼 = {𝐱 ∶  
𝐱̅− θ0

√θ0
√𝑛  ≥  𝑧𝛼},  բ) 𝒳1𝛼 = {𝐱 ∶  

𝐱̅− θ0

√θ0
√𝑛  ≤ − 𝑧𝛼}:  

9.8. Դիցուք 𝐗  ~ 𝕌(0, θ), θ > 0: Կառուցել 𝛼 չափ ունեցող հավասարա-

չափ առավել հզոր հայտանիշներ հետևյալ վարկածները ստուգելու հա-

մար՝ ա) ℍ0
−: θ ≤ θ0 ընդդեմ ℍ1

+: θ > θ0 և բ) ℍ0
+: θ ≥ θ0 ընդդեմ ℍ1

−: θ < θ0: 
 

Ցուցում՝ նկատել, որ 𝕌(0, θ) դասն ունի մոնոտոն ճշմարտանմանության 

հարաբերություն ըստ 𝑇(𝐱) = 𝑥(𝑛) ֆունկցիայի և կիրառել թեորեմ 9.4-ը: 

Պատասխան՝  ա) 𝒳1𝛼  = {𝐱 ∶  𝑇(𝐱) ≥ θ0 √1 − 𝛼
𝑛

 },  բ) 𝒳1𝛼= {𝐱 ∶  𝑇(𝐱) ≤ θ0 √𝛼
𝑛
 }:  

 

       § 9.4. Պարզ վարկածի ստուգում ընդդեմ երկկողմանի բարդ  

      երկընտրանքային վարկածի 

 

Դիցուք 𝐗 ~  Pθ ∈ 𝓔 նմուշ է ցուցչային դասին պատկանող  Pθ բաշ-

խումից, և դիտարկվում է 

ℍ0 : θ = θ0 վարկածն ընդդեմ ℍ1 : θ ≠ θ0                       (9.18) 

երկկողմանի բարդ երկընտրանքայինի ստուգման խնդիրը: Պարզվում է, 

որ այդ վարկածները ստուգող, 𝛼 չափ ունեցող հավասարաչափ առավել 

հզոր հայտանիշ գոյություն չունի:  

Իրոք, ենթադրենք  Pθ բաշխման 𝑓θ(𝑥) խտության ֆունկցիան՝ բացար-

ձակ անընդհատ դեպքում, կամ 𝑝θ(𝑥) հավանականության ֆունկցիան՝ 

դիսկրետ դեպքում, ունի հետևյալ ներկայացումը՝ 

𝑓θ(𝑥) (𝑝θ(𝑥)) = ℎ(𝑥) exp{𝐴(θ)𝑆(𝑥) + 𝐵(θ)}:   (9.19) 
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Դիցուք A(θ)­ն աճող ֆունկցիա է, իսկ  𝑇(𝑿)  = ∑ 𝑆(𝑋𝑖)
𝑛
𝑖=1  վիճականու 

 𝐺θ
𝑇(𝐵) = ℙθ(𝑇(𝐗) ∈ 𝐵), 𝐵 ∈ ℬ(ℛ) բաշխումը բոլոր θ ∈ Θ-ների համար բա-

ցարձակ անընդհատ է: Ըստ թեորեմ 9.4-ի՝ ℍ0 : θ = θ0 վարկածն ընդդեմ 

ℍ1 : θ > θ0 մրցող վարկածի ստուգող ոչ ռանդոմիզացված հավասա-

րաչափ առավել հզոր (ՀԱՀ) հայտանիշը 𝛼 չափ ունեցող  

𝕂𝛼
0 = {𝛿: E0[𝜑(𝐗)] = 𝛼} 

հայտանիշների դասում, տրվում է 𝒳1𝛼
+ = {𝐱 ∶  𝑇(𝐱) ≥ 𝑐𝛼} կրիտիկական 

տիրույթով, իսկ ℍ1 : θ < θ0 մրցող  վարկածի դեպքում՝ 𝒳1𝛼
− = {𝐱 ∶  𝑇(𝐱) ≤

≤ 𝑐𝛼} կրիտիկական տիրույթով: Այնպես որ 𝜑+(𝐱) = 𝟙𝒳1𝛼+ (𝐱) կրիտի-

կական ֆունկցիայով հայտանիշը կլինի հավասարաչափ առավել հզոր 

բոլոր θ > θ0 համար, իսկ 𝜑−(𝐱) = 𝟙𝒳1𝛼− (𝐱) հայտանիշը՝ հավասարաչափ 

առավել հզոր բոլոր θ < θ0 համար: Այստեղից հետևում է, որ գոյություն 

չունի 𝛼 չափ ունեցող հավասարաչափ առավել հզոր հայտանիշ, որը լուծի 

(9.18) խնդիրը միաժամանակ բոլոր θ-ների (θ ≠ θ0) համար:  

Պարզվում է, որ այդ խնդիրն ունի լուծում, եթե 𝕂𝛼
0  դասը նեղացվի, և 

խնդիրը դիտարկվի 𝕂𝛼
0  դասի  

𝕂̃𝛼
0 = {𝛿 ∈ 𝕂𝛼

0 :  Eθ[𝜑(𝐗)] ≥ 𝛼,   θ ≠ θ0} 

անշեղ հայտանիշների ենթադասում: 

Վերը նշված 𝜑+(𝐱) և 𝜑−(𝐱) կրիտիկական ֆունկցիաներով հայտա-

նիշները չեն կարող լինել անշեղ, քանի որ Eθ[𝜑
+(𝐗)] < 𝛼, երբ θ < θ0, 

Eθ[𝜑
−(𝐗)] < 𝛼, երբ θ > θ0 և E0[𝜑

±(𝐗)] = 𝛼 (համաձայն թեորեմ 9.3-ի՝ 

Eθ[𝜑
+(𝐗)]  ֆունկցիան խիստ մոնոտոն աճող է, իսկ Eθ[𝜑

−(𝐗)] ֆունկցիան՝ 

խիստ մոնոտոն նվազող): 

       Թեորեմ 9.5: Դիցուք 𝐗 ~ Pθ ∈ ℰ նմուշ է ցուցչային դասին պատկանող 

Pθ բաշխումից, և բավարարվում են ռեգուլյարության (𝑹)-պայմանները 

(տե՛ս [15]-ի սահմանում 6.2-ը): Եթե (9.19) ներկայացման մեջ մասնակ-

ցող 𝐴(θ) ֆունկցիան խիստ մոնոտոն աճող է, ապա 𝛼 չափ ունեցող անշեղ 

հայտանիշների  𝕂̃𝛼
0  դասում գոյություն ունի 

ℍ0 : θ = θ0 վարկածն ընդդեմ   ℍ1 : θ ≠ θ0 



§ 9.4. Պարզ վարկածի ստուգում ընդդեմ երկկողմանի բարդ  

երկընտրանքային վարկածի 

47 

երկընտրանքայինի ստուգող օպտիմալ (ՀԱՀ) հայտանիշը, որն ունի 

հետևյալ տեսքը՝ 

    𝜑∗(𝐱) = {

1, եթե  𝑇(𝐱) < 𝑐1  կամ  𝑇(𝐱) > 𝑐2
𝜀𝑖 , եթե   𝑇(𝐱) = 𝑐𝑖 , 𝑖 = 1, 2            

0,   եթե   𝑐1 < 𝑇(𝐱) < 𝑐2                   

 ,                  (9.20)  

 որտեղ 𝑇(𝐗) =∑𝑆(𝑋𝑖)

𝑛

𝑖=1

, իսկ 𝑐𝑖 և 𝜀𝑖 , 𝑖 = 1, 2 հաստատունները որոշվում են 

    E0(𝜑
∗(𝐗) − 𝛼) = 0   և   E0[(𝜑

∗(𝐗) − 𝛼) 𝑇(𝐗)] = 0            (9.21) 

պայմաններից:  

Դիտողություն 9.3: Դիցուք θ = θ0 դեպքում 𝑇 = 𝑇(𝐗) վիճականու 

𝐺0
𝑇(𝐵) = P0(𝑇 ∈ 𝐵), 𝐵 ∈ ℬ(ℛ) բաշխումը համաչափ է որոշակի 𝑏 ∈ ℛ կետի 

նկատմամբ, այսինքն՝ 
 

𝐺0
𝑇(𝑏 + 𝑥 + 0) + 𝐺0

𝑇(𝑏 − 𝑥) = 1,  կամ  P0(𝑇 < 𝑏 − 𝑥) = P0(𝑇 > 𝑏 + 𝑥), 𝑥 ∈ ℛ   
 

(𝐺0
𝑇(𝑥) = P0(𝑇 < 𝑥), 𝑇 = 𝑇(𝐗) վիճականու բաշխման ֆունկցիան է): 

Ենթադրենք, բացի այդ, (9.20) տեսքի 𝜑∗(𝐱) կրիտիկական ֆունկցիան 

նույնպես համաչափ է 𝑏 ∈ ℛ կետի նկատմամբ, որտեղից կհետևի, որ 

𝑏 =
1

2
(𝑐1 + 𝑐2) և 𝜀1 = 𝜀2 = 𝜀: Հեշտ է տեսնել, որ (9.20) պայմանը բավարա-

րող 𝜑∗(𝐗) ֆունկցիան կբավարարի նաև (9.21) պայմանը: Իրոք, 

E0[𝑇(𝐗)𝜑
∗(𝐗)] = E0[(𝑇(𝐗) − 𝑏)𝜑

∗(𝐗)] + 𝑏E0[𝜑
∗(𝐗)] = 𝛼𝑏 = 𝛼E0[𝑇(𝐗)] 

(այստեղ E0[(𝑇 − 𝑏) 𝜑
∗(𝐗)] = 0, քանի որ 𝑇(𝐗) վիճականին և  𝜑∗(𝐗) կրի-

տիկական ֆունկցիան համաչափ են 𝑏 կետի նկատմամբ, իսկ 

 E0[𝑇(𝐗)] = 𝑏): Այսպիսով, 𝜑∗(𝐱) կրիտիկական ֆունկցիայի (9.20) ներ-

կայացման մեջ մասնակցող 𝑐𝑖 և 𝜀𝑖, 𝑖 = 1, 2 հաստատունները որոշվում են  

E0[𝜑
∗(𝐗)] = P0(𝑇 < 𝑐1) + P0(𝑇 > 𝑐2) + 2𝜀P0(𝑇 = 𝑐1) = 𝛼 

պայմանից: Այստեղից, քանի որ P0(𝑇 > 𝑐2) = P0(𝑇 < 𝑐1 ), ապա 𝑐1 և 𝜀 

թվերը գտնելու համար կստանանք` (𝑐 > 0) 

P0(𝑇 < 𝑐1) + 𝜀P0(𝑇 = 𝑐1) = 
𝛼

2
                                 (9.22) 
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հավասարումը: Մասնավորապես, 𝑏 = 0 դեպքի համար 𝑐1 = − 𝑐2 ∶= − 𝑐  

(𝑐 > 0)  և 𝜑∗(𝐱) կրիտիկական ֆունկցիան կընդունի հետևյալ տեսքը՝ 
 

𝜑∗(𝐱) = {

1, եթե  |𝑇(𝐱)| > 𝑐

 𝜀, եթե  |𝑇(𝐱)| = 𝑐

0, եթե  |𝑇(𝐱)| < 𝑐

 : 

Անընդհատ 𝑇(𝐗) վիճականիների դեպքում (երբ θ = θ0) ոչ ռանդոմիզաց-

ված հայտանիշի կրիտիկական ֆունկցիան կլինի`  

𝜑∗(𝐱) = {
1, եթե  |𝑇(𝐱)| ≥ 𝑐

0, եթե  |𝑇(𝐱)| < 𝑐
 ,                      (9.23)  

որտեղ 𝑐 > 0 կրիտիկական եզրը որոշվում է հետևյալ պայմանից` 

 P0(𝑇 < − 𝑐) = P0(𝑇 > 𝑐) =
𝛼

2
               (9.24)  

Թեորեմ 9.5-ը ապացուցելու համար անհրաժեշտ են հետևյալ լեմմա-

ները (տե՛ս Боровков [1])` 

        Լեմմա 9.6: Դիցուք  𝐗 ~  Pθ ∈ ℰ, և բավարարվում են ռեգուլյարության 

(𝑹)-պայմանները: Այդ դեպքում բոլոր θ ∈ Θ-ների համար Eθ[𝜑
2(𝐗)] ≤ 𝑐 

պայմանը բավարարող 𝕂̃𝛼
0  դասից ցանկացած անշեղ հայտանիշ 

բավարարում է հետևյալ հատկությունները՝ 

     E0[𝜑(𝐗) − 𝛼] = 0  և                          (9.25) 
 

 E0[(𝜑(𝐗) − 𝛼)𝑇(𝐗)] = 0,                                     (9.26) 
 

 որտեղ                       𝑇(𝐗) =∑𝑆(𝑋𝑖) (E0(∙) ∶= Eθ0(∙)) ∶

𝑛

𝑖=1

  

Հաջորդ լեմման Նեյման – Պիրսոնի ֆունդամենտալ լեմմայի ընդհան-

րացումն է։ 

 Լեմմա 9.7: Դիցուք 𝑓0(𝐱),  𝑓1(𝐱), … , 𝑓𝑚(𝐱)-ը 𝒳𝑛 բազմության վրա որոշված 

ինտեգրելի բորելյան ֆունկցիաներ են: Նշանակենք 𝛷𝛼-ով բոլոր այն 𝜑(𝐱 ) 

կրիտիկական ֆունկցիաների դասը, որոնք որոշակի 𝛼𝑖 (0 < 𝛼𝑖 < 1), 

𝑖 = 0,… ,𝑚 − 1 թվերի համար բավարարում են հետևյալ պայանները 
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∫𝜑(𝐱)𝑓𝑖(𝐱)𝑑𝐱
 = 𝛼𝑖  

 

𝒳𝑛

:                                         (9.27) 

 

Այդ դեպքում՝  𝜑0(𝐱) ∈ 𝛷𝛼 կրիտիկական ֆունկցիան, որի համար 

∫𝜑0(𝐱)𝑓𝑚(𝐱)𝑑𝐱
 

 

𝒳𝑛

 

 ինտեգրալն ընդունում է իր մեծագույն արժեքը, ունի հետևյալ տեսքը՝  

 𝜑0(𝐱)  =  

{
 
 

 
 1,   եթե  𝑓𝑚(𝐱)  > ∑ 𝑘𝑖 𝑓𝑖(𝐱)

𝑚−1

𝑖=0

0,   եթե  𝑓𝑚(𝐱)  <  ∑ 𝑘𝑖 𝑓𝑖(𝐱)

𝑚−1

𝑖=0

 ,                       (9.28)  

 որտեղ 𝑘𝑖, 𝑖 = 0,… ,𝑚 − 1 հաստատունները որոշվում են (9.27) պայ-

մաններից : 

Լե մ մ ա 9.6-ի ա պ ա ց ու ց ու մ: Ըստ պայմանի՝ ցանկացած 𝜑 ∈ 𝕂̃𝛼
0  

կրիտիկական ֆունկցիայի համար 𝑊𝜑(θ) հզորության ֆունկցիան θ = θ0 

կետում ընդունում է իր փոքրագույն արժեքը: Մյուս կողմից, քանի որ բա-

վարարվում են (𝑹)-պայմանները, և բոլոր θ ∈ Θ-ների համար Eθ[𝜑
2(𝐗)]  ≤

 ≤ 𝑐, ապա (տե՛ս [15]-ի լեմմա 6.5-ը) 𝑊𝜑(θ) ֆունկցիան դիֆերենցելի է, և 

տեղի ունի հետևյալ հավասարությունը՝  

 𝑊𝜑
′(θ) = ∫𝜑(𝐱)𝑓𝜃

′(𝐱)𝑑𝐱 =

 

𝒳𝑛

Eθ[𝜑(𝐗) 𝑈(𝐗 , θ)], 

որտեղ 𝑈(𝐗, θ) = 𝐿θ
′ (𝐗) = [ln 𝑓θ(𝐗)]

′  𝐗 նմուշի ներդրման ֆունկցիան է:  

Այնպես որ θ = θ0 կետում 𝑊𝜑(θ) ֆունկցիայի փոքրագույն 𝛼 արժեքն 

ընդունելու անհրաժեշտ պայմանը կլինի`  

    𝑊𝜑(θ0) = 𝛼   և  𝑊𝜑
′(θ0) = 0,               (9.29) 

որը համարժեք է  

 E0[𝜑(𝐗)] = 𝛼   և    E0[𝜑(𝐗) 𝑈(𝐗 , θ0)] = 0                      (9.30) 

հավասարություններին:  
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Քանի որ  𝐗 ~ Pθ ∈ ℰ նմուշը համապատասխանում է (9.19) ցուցչային 

դասից Pθ բաշխմանը, ապա լոգարիթմական ճշմարտանմանության 

ֆունկցիան կլինի հավասր 

 𝐿𝜃(𝐗) = ln 𝑓𝜃(𝐗) =∑lnℎ(𝑋𝑖) + 𝐴(θ)𝑇(𝐗) + ln 𝐶(θ),

𝑛

𝑖=1

 

որտեղ 

 𝑇(𝐗) =∑𝑆(𝑋𝑖)

𝑛

𝑖=1

,   𝐶(θ) = exp{𝑛𝐵(θ)}:  

Այստեղից՝ 

𝑈(𝐗 , θ) = 𝐿𝜃
′ (𝐗) = 𝐴′(θ)𝑇(𝐗)  + 

𝐶′(θ)

𝐶(θ)
 , 

 

և քանի որ 
 

Eθ𝑈(𝐗
 , θ) = 0 (տե′ս [15]-ի լեմմա 6.5-ը), 

 

ապա 

𝐶′(θ)

𝐶(θ)
 = −𝐴′(θ) Eθ[𝑇(𝐗)]: 

Մյուս կողմից՝ 
 

Eθ[𝜑(𝐗)𝑈(𝐗
 , θ)] = 𝐴′(θ) Eθ[𝜑(𝐗)𝑇(𝐗)]−𝐴

′(θ) Eθ[𝜑(𝐗)]Eθ[𝑇(𝐗)], 
 

այնպես որ (9.30) պայմանները բերվում են (9.25) և (9.26) տեսքի  

(θ = θ0):    
   

Լ ե մ մ ա 9.7-ի  ա պ ա ց ու ց ու մ: Նշանակենք` 
 

𝐺𝑖(𝜑) = ∫𝜑(𝐱)𝑓𝑖(𝐱)𝑑𝐱
 ,   𝑖 = 0,… ,𝑚 ∶

 

𝒳𝑛

 

 

Որպեսզի 𝐺𝑖(𝜑) = 𝛼𝑖, 𝑖 = 0,… ,𝑚 − 1 պայմանները բավարարող 𝜑 ∈ 𝛷𝛼 

կրիտիկական ֆունկցիայի համար 𝐺𝑚(𝜑) ֆունկցիոնալն ընդունի իր մե-

ծագույն արժեքը, անհրաժեշտ է և բավարար, որ այն մաքսիմալացնի 
  

 𝒥(𝜑) = 𝐺𝑚(𝜑) − ∑ 𝑘𝑖𝐺𝑖(𝜑)

𝑚−1

𝑖=0
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ֆունկցիոնալը որոշակի  𝑘𝑖 , 𝑖 = 0 , … ,𝑚 − 1  հաստատունների դեպքում 
 

(∑ 𝑘𝑖𝐺𝑖(𝜑) արժեքն այստեղ ֆիքսված է

𝑚−1

𝑖=0

): 

 

Այսպիսով, բավարար է, որ 𝜑-ն մաքսիմալացնի 

𝒥(𝜑) = ∫[𝑓𝑚(𝐱) − ∑ 𝑘𝑖𝑓𝑖(𝐱)

𝑚−1

𝑖=0

]𝜑(𝐱)𝑑𝐱 
 

𝒳𝑛

 

ֆունկցիոնալը: Ներկայացնելով այն հետևյալ տեսքով` 

𝒥(𝜑) = ∫ [𝑓𝑚 − ∑ 𝑘𝑖𝑓𝑖

𝑚−1

𝑖=0

]

 

𝑓𝑚−∑𝑘𝑖𝑓𝑖>0

𝜑𝑑𝐱 + ∫ [𝑓𝑚 − ∑ 𝑘𝑖𝑓𝑖

𝑚−1

𝑖=0

]

 

𝑓𝑚−∑𝑘𝑖𝑓𝑖<0

𝜑𝑑𝐱  

և հաշվի առնելով 0 ≤ 𝜑(𝐱) ≤ 1 պայմանը՝ այստեղից կարելի է եզրակաց-

նել, որ 𝒥(𝜑) ֆունկցիոնալն ընդունում է իր մեծագույն արժեքը, երբ 

𝜑0(𝐱) ∈ 𝛷𝛼 ֆունկցիան ունի (9.28) տեսքը: 𝑘𝑖, 𝑖 = 0,… ,𝑚 − 1 հաստա-

տուններն այդ ներկայացման մեջ (ինչպես նաև 𝜑0(𝐱)  ֆունկցիայի արժեք-

ները 
 

(𝐱 ∶  fm(𝐱) = ∑ 𝑘𝑖𝑓𝑖(𝐱)

𝑚−1

𝑖=0

) 

 

«եզրային» բազմության վրա) անհրաժեշտ է ընտրել այնպես, որ բավա-

րարվեն (9.27) պայմանները:  

       Թ ե ո ր ե մ 9.5-ի  ա պ ա ց ու ց ու ց ու մ: Վերցնենք ցանկացած            

θ ≠ θ0 արժեք և դիտարկենք (9.25), (9.26) պայմանների դեպքում        

𝑊𝜑(θ) = Eθ[𝜑(𝐗)] հզորության ֆունկցիայի մաքսիմալացման խնդիրը: 

Համաձայն լեմմա 9.7-ի, վերցնելով 𝑚 = 2,   𝑓0 = 𝑓θ0 ,   𝑓1 = 𝑇𝑓θ0 ,   𝑓2 = 𝑓θ , 

𝛼0 = 𝛼,   𝛼1 =  𝛼E0[𝑇(𝐗)], կարելի է եզրակացնել, որ 𝑊𝜑(θ) ֆունկցիան իր 

մեծագույն արժեքն ընդունում է 
 

𝜑∗(𝐱) = {
1, եթե  𝑓θ(𝐱) > 𝑘0 𝑓θ0(𝐱) + 𝑘1𝑇(𝐱) 𝑓θ0(𝐱)

0, եթե  𝑓θ(𝐱) < 𝑘0 𝑓θ0(𝐱) + 𝑘1𝑇(𝐱) 𝑓θ0(𝐱)
          (9.31)  

ֆունկցիայի վրա: 
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Մյուս կողմից, քանի որ  Pθ ∈ ℰ բաշխումը պատկանում է ցուցչային 

դասին, ապա 

𝑓θ(𝐱) < 𝑘0𝑓θ0(𝐱) + 𝑘1𝑇(𝐱)𝑓θ0(𝐱) 

անհավասարությունը կարելի է ներկաացնել հետևյալ ձևով՝  

𝐶(θ)

𝐶(θ0)
exp{(𝐴(θ) − 𝐴(θ0)) 𝑇(𝐱)} < 𝑘0 + 𝑘1𝑇(𝐱): 

Կամայական 𝑐1 < 𝑐2 թվերի համար միշտ կարելի է ընտրել այնպիսի 𝑘0  և 

𝑘1 թվեր, որ այդ անհավասարությունը լինի համարժեք 𝑐1 < 𝑇(𝐱) < 𝑐2 

անհավասարությանը: Այստեղից հետևում է, որ (9.20) տեսք ունեցող 

𝜑∗(𝐱) հայտանիշը մաքսիմալացնում է (9.25), (9.26) պայմանների 

դեպքում 𝑊𝜑(θ) = Eθ[𝜑(𝐗)] հզորության ֆունկցիան, եթե 𝑐𝑖, 𝜀𝑖, 𝑖 = 1, 2 

թվերը (9.20)-ում վերցվեն այնպես, որ բավարարվեն (9.25), (9.26) 

պայմանները: Ակնհայտ է, որ 𝜑∗ կրիտիկական ֆունկցիայով հայտանիշն 

անշեղ օպտիմալ (ՀԱՀ ) հայտանիշ է, քանի որ (9.25), (9.26) պայմանները 

բավարարող հայտանիշների դասը պարունակում է 𝕂̃𝛼
0  դասը (լեմմա 9.6): 

Այսպիսով, 𝜑∗ կրիտիկական ֆունկցիան մաքսիմալացնում է 𝑊𝜑(θ) 

հզորության ֆունկցիան նաև 𝕂̃𝛼
0  դասում:      

Օրինակ 9.7:  Դիցուք  𝐗 ~ ℕ(θ, σ2) և ստուգվում է  

ℍ0 : θ = θ0 վարկածն ընդդեմ ℍ1 : θ ≠ θ0 

երկկողմանի երկընտրանքային վարկածի:  

Այդ դասին համապատասխանող խտության ֆունկցիան բերվում է  

𝑓θ(𝑥) = ℎ(𝑥) exp{𝐴(θ)𝑆(𝑥) + 𝐵(θ)}, 𝑥 ∈ ℛ 

ցուցչային տեսքի, որտեղ 
 

ℎ(𝑥) =
1

σ√2𝜋
 exp {−

𝑥2

2σ2
},  𝐴(θ) =

θ

σ2
 ,  𝐵(θ) = − 

θ2

2σ2
 ,  𝑆(𝑥) = 𝑥: 

Քանի որ 𝐴(θ) ֆունկցիան խիստ մոնոտոն աճող է, ապա, ըստ թեորեմ 9.5-

ի, այդ վարկածները ստուգող ոչ ռանդոմիզացված օպտիմալ (ՀԱՀ) անշեղ 

հայտանիշի կրիտիկական տիրույթը կունենա հետևյալ տեսքը՝ 
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𝒳1𝛼 = {𝐱 ∶  𝑇(𝐱) < 𝑐1 ∪ 𝑇(𝐱) > 𝑐2 }, 

որտեղ  𝑇(𝐱) = ∑ 𝑥𝑖:  
𝑛
𝑖=1 Հաշվի առնելով, որ ℍ0 վարկածի դեպքում 

𝑇(𝐗) ~ ℕ(𝑛θ0, 𝑛σ
2) վիճականին համաչափ է բաշխված 𝑏 = 𝑛θ0 կետի 

նկատմամբ, ապա, համաձայն դիտողություն 9.3-ի, 𝑐1 + 𝑐2 = 2𝑛θ0 և 𝑐1 

հաստատունը որոշվում է P0(𝑇 < 𝑐1) =
𝛼

2
  պայմանից: Այստեղից կստա-

նանք`  

P0(𝑇 < 𝑐1) = P0(𝐗̅ < 𝑐1 𝑛⁄ ) = P0(
𝐗̅ − θ0
σ

 √𝑛  <

𝑐1
𝑛
− θ0

σ
 √𝑛) =

= Φ(

𝑐1
𝑛
 − θ0

σ
 √𝑛) =

𝛼

2
, 

որտեղից` 

 

𝑐1
𝑛 − θ0

σ
 √𝑛 = − 𝑧𝛼 2 ,⁄  

այնպես որ՝ 

 𝑐1 = 𝑛θ0 − √𝑛 σ𝑧𝛼 2⁄  ,  𝑐2 = 𝑛θ0 + √𝑛 σ𝑧𝛼 2⁄  :   (9.32) 

Ներկայացնենք 𝒳1𝛼 կրիտիկական տիրույթը  

𝒳1𝛼 = {𝐱 ∶  | 
𝐱̅ − θ0
σ

√𝑛 | > 𝑧𝛼 2⁄  } 

տեսքով: Հզորության ֆունկցիայի համար կստանանք`  

 𝑊𝜑∗(θ) = Pθ(𝐗 ∈ 𝒳1𝛼) = Pθ(𝐗̅ < 𝑐1 𝑛⁄  ∪ 𝐗̅ > 𝑐2 𝑛⁄ ) = 

 

= Pθ (
𝐗̅ − θ0
σ

√𝑛  <

𝑐1
𝑛 − θ0

σ
√𝑛) + Pθ (

𝐗̅ − θ0
σ

√𝑛  >

𝑐2
𝑛 − θ0

σ
√𝑛):  

Տեղադրելով այստեղ (9.32)-ից 𝑐1-ի և 𝑐2-ի արժեքները և հաշվի առնելով, 

որ  𝐗̅ ~ ℕ(θ, σ2 n⁄ ), կստանանք` 
 

𝑊𝜑∗(θ) = Φ(
 θ0 − θ

σ
√𝑛 − 𝑧𝛼 2⁄ ) + Φ(

θ − θ0 

σ
√𝑛 − 𝑧𝛼 2⁄ ): 
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Այս ներկայացումից հետևում է, որ 𝑊𝜑∗(θ) հզորության ֆունկցիան 

համաչափ է θ = θ0 կետի նկատմամբ, ընդ որում այդ կետում այն ըն-

դունում է իր փոքրագույն՝ 𝑊𝜑∗(θ) = 𝛼 արժեքը: Բացի այդ, 𝑊𝜑∗(θ) > 𝛼, երբ 

θ ≠ θ0, այն խիստ աճող է, երբ θ > θ0, և խիստ նվազող, երբ θ < θ0 ու 

𝑊𝜑∗(θ)  → 1, երբ |θ| → ∞:         

Օրինակ 9.8: Այժմ ենթադրենք 𝐗 ~ ℕ(𝑚, θ2) և ստուգենք ℍ0 : θ2 = θ0
2 

վարկածն ընդդեմ ℍ1 : θ2 ≠ θ0
2 երկկողմանի երկընտրանքայինի:  

Բերենք մոդելը ցուցչային տեսքի (տե՛ս (9.19)), որտեղ ℎ(𝑥) =
1

√2𝜋
, 

𝐴(θ) = − 
1

2θ2
 ,  𝐵(θ) = − lnθ,  𝑆(𝑥) = (𝑥 − 𝑚)2: 

Մյուս կողմից՝ 𝑇(𝐱) =  ∑ (𝑥𝑖 −𝑚)
2,𝑛

𝑖=1  և քանի որ A(θ)­ն խիստ մոնո-

տոն աճող ֆունկցիա է, ապա, ըստ թեորեմ 9.5-ի, ոչ ռանդոմիզացված 

օպտիմալ (ՀԱՀ) անշեղ հայտանիշի կրիտիկական տիրույթը կլինի 

  𝒳1𝛼 = {𝐱 ∶  𝑇(𝐱) < 𝑐1 ∪  𝑇(𝐱) > 𝑐2 } ,                  (9.33) 

բազմությունը, որտեղ 𝑐1 և 𝑐2 հաստատունները բավարարում են (9.21) 

կամ համարժեք 𝑊𝜑(θ0) = 𝛼 և 𝑊𝜑
′(θ0) = 0 պայմանները (տե՛ս լեմմա 9.6-ի 

ապացուցումը):  

Այստեղից՝ քանի որ ℍ0 վարկածի դեպքում՝  
 

(1 θ0
2⁄ ) 𝑇(𝐗) =  ∑(

𝑋𝑖 −𝑚

θ0
)
2𝑛

𝑖=1

~  ℍ2(𝑛),ապա 

𝑊𝜑(θ0) = P0(𝑇 < 𝑐1) + P0(𝑇 > 𝑐2) =  H𝑛(𝑐1 θ0
2⁄ ) + 1 − H𝑛(𝑐2 θ0

2⁄ ) = 𝛼, (9.34)  

𝑊𝜑
′(θ0) = 𝑐1ℎ𝑛(𝑐1 θ0

2⁄ ) − 𝑐2ℎ𝑛(𝑐2 θ0
2⁄ ) = 0,                    (9.35) 

որտեղ H𝑛(𝑥)-ը և ℎ𝑛(𝑥)-ը 𝑛 ազատության աստիճաններով 𝝌𝟐 բաշխում 

ունեցող պատահական մեծության՝ համապատասխանաբար բաշխման և 

խտութան ֆունկցիաներն են (տե՛ս [15]-ի § 2.2-ը): 

Այժմ, վերցնելով 𝑐1 և 𝑐2 թվերն այնպես, որ H𝑛(𝑐1 θ0
2⁄ ) = 𝛼1 և  

1 − H𝑛(𝑐2 θ0
2⁄ ) = 𝛼2, որտեղ 𝛼1 + 𝛼2 = 𝛼 (0 < 𝛼 < 1), այստեղից և (9.35) 

պայմաններից կստանանք` 
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𝑐1 = θ0
2 𝜒1−𝛼1

2 (𝑛),  𝑐2 = θ0
2 𝜒𝛼2

2 (𝑛), 

𝜒1−𝛼1
2 (𝑛) ℎ𝑛(𝜒1−𝛼1

2 (𝑛) )  =  𝜒𝛼2
2 (𝑛) ℎ𝑛 (𝜒𝛼2

2 (𝑛)), 

կամ՝  

𝜒𝛼2
2 (𝑛)

𝜒1−𝛼1
2 (𝑛)

 

= exp { (𝜒𝛼2
2 (𝑛) − 𝜒1−𝛼1

2 (𝑛)) ∕ 2} 

(ℎ𝑛(𝑥) =
1

2 𝑛 2⁄  Γ(𝑛 2⁄ ) 
 𝑥𝑛 2⁄  −1𝑒−𝑥 2⁄ 𝟙(0,∞)(𝑥),   𝑥 ∈ ℛ): 

 Այս պայմաններով 𝑐1 և 𝑐2 հաստատունները, ինչպես նաև 𝜒1−𝛼1
2 (𝑛) և 

𝜒𝛼2
2 (𝑛) կրիտիկական արժեքները որոշվում են միարժեք ձևով: Օրինակ, 

𝛼 = 0.05 նշանակալիության մակարդակի համար ստացվում են հետևյալ 

արժեքները՝  

𝑛        𝜒1−𝛼1
2 (𝑛)        𝜒𝛼2

2 (𝑛)  

5  0.99  14.37 

10  3.52  21.73 

20  9.96  35.23 : 

 𝜑∗(𝐱) կրիտիկական ֆունկցիայով օպտիմալ (ՀԱՀ) անշեղ հայտանիշին  

համապատասխանող 𝒳1𝛼 կրիտիկական տիրույթը (տե՛ս (9.33)) կունենա 

հետևյալ տեսքը՝ 

𝒳1𝛼 = {𝐱
 : 𝑇(𝐱) < θ0

2 𝜒1−𝛼1
2 (𝑛) ∪  𝑇(𝐱) > θ0

2 𝜒𝛼2
2 (𝑛)}: 

Հայտանիշի հզորության ֆունկցիան կլինի` 

𝑊𝜑∗(θ) = Pθ(𝑇 < 𝑐1)  + Pθ(𝑇 > 𝑐2) =  

 = H𝑛 ((
θ0

θ
)
2
𝜒1−𝛼1
2 (𝑛)) + 1 − H𝑛 ((

θ0

θ
)
2
𝜒𝛼2
2 (𝑛)): 

Այստեղից հետևում է, որ lim|θ|→∞𝑊𝜑∗(θ) = 1:  
 

Խնդիրներ  
 

9.9. Դիցուք 𝐗 ~ 𝔼(θ), (θ > 0) նմուշ է ցուցչային բաշխումից: Կառուցել 

ℍ0 : θ = θ0 վարկածն ընդդեմ ℍ1: θ ≠ θ0 երկընտրանքայինի ստուգող, 𝛼 

չափ ունեցող ՀԱՀ (օպտիմալ) անշեղ հայտանիշը: Գտնել հայտանիշի 

հզորության ֆունկցիան:  
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Ցուցում՝ բերել բաշխումը ցուցչային տեսքի և օգտվել թեորեմ 9.5-ից:  
 

Պատասխան՝  𝒳1𝛼 = {𝐱 ∶  
1

2θ0
𝜒𝛼2
2 (2𝑛) ≤ ∑ 𝑥𝑖 ≤

1

2θ0
 𝜒1−𝛼1
2 (2𝑛)𝑛

𝑖=1 },  

𝑊𝜑∗(θ) =  H2𝑛 (
θ

θ0
 𝜒1−𝛼1
2 (2𝑛)) − H2𝑛 (

θ

θ0
 𝜒𝛼2
2 (2𝑛)),   𝛼1 + 𝛼2 = 𝛼: 

𝟗. 𝟏𝟎 . X ~ 𝔹er (θ) նմուշի միջոցով կառուցել ℍ0 : θ = θ0 վարկածն 

ընդդեմ ℍ1: θ ≠ θ0 երկընտրանքային վարկածը ստուգող 𝛼 չափ ունեցող 

ՀԱՀ (օպտիմալ) անշեղ հայտանիշը: 
 

Ցուցում՝ բերել բաշխումը ցուցչային տեսքի՝ օգտվելով թեորեմ 9.5-ից:  
 

Պատասխան՝   𝜑∗(𝐱) = {

1, եթե  𝑇(𝐱) < 𝑐1  կամ   𝑇(𝐱 ) > 𝑐2 
𝜀𝑖 , եթե   𝑇(𝐱) = 𝑐𝑖  , 𝑖 = 1, 2              

0, եթե   𝑐1 < 𝑇(𝐱) < 𝑐2                      
, 

 𝑇(𝐱) =∑𝑥𝑖 ,

𝑛

𝑖=1

 իսկ  𝑐𝑖  և  𝜀𝑖 , 𝑖 = 1, 2  թվերը գտնվում են հետևյալ պայմաններից՝ 

B(𝑐2;  𝑛,  θ0)  −  B(𝑐1 + 1;  𝑛,  θ0)  +  ∑(1 − 𝜀𝑖)[B(𝑐𝑖 + 1;  𝑛,  θ0)  −  B(𝑐𝑖;  𝑛,  θ0)]

2

𝑖=1

= 

= 1 − 𝛼 , 

B(𝑐2 − 1;  𝑛 − 1,  θ0)  −  B(𝑐1;  𝑛 − 1,  θ0)

+  ∑(1 − 𝜀𝑖)[B(𝑐𝑖;  𝑛 − 1,  θ0)  −  B(𝑐𝑖 − 1;  𝑛 − 1,  θ0)]

2

𝑖=1

 = 1 − 𝛼 ∶ 

9.11. Դիցուք X ~ 𝔹er (θ): Կառուցել ℍ0 : θ = θ0 վարկածն ընդդեմ        

ℍ1: θ ≠ θ0 մրցող վարկածի ստուգող, ասիմպտոտիկ 𝛼 չափ ունեցող ՀԱՀ 

(օպտիմալ) անշեղ հայտանիշը: Գտնել նաև հայտանիշի հզորության 

ֆունկցիան: 

Ցուցում՝ օգտվել Մուավր-Լապլասի ինտեգրալային սահմանային թեորեմից՝ 

ℤ𝑛 = 
𝐗̅ − θ0

√θ0(1 − θ0)
√𝑛 

𝑑
→ℕ(0,1), երբ 𝑛 → ∞,  

և օրինակ 9.3 -ից: 

Պատասխան՝ 𝒳1𝛼 = {𝐱 ∶  |
𝐱̅− θ0

√θ0(1 − θ0)
√𝑛| ≥ 𝑧𝛼 2⁄  },  

𝑊𝜑∗(𝜃) = Φ(
 θ0 − θ

√θ0(1 − θ0)
√𝑛 − 𝑧𝛼 2⁄ ) +  Φ (

θ − θ0

√θ0(1 − θ0)
√𝑛 − 𝑧𝛼 2⁄ ) 
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       § 9.5. Վարկածների ստուգում և միջակայքային  

       գնահատականներ 

 

Պարամետրի վերաբերյալ պարզ վարկածները ստուգելու և այդ պա-

րամետրի համար վստահության միջակայքեր կառուցելու խնդիրների 

միջև գոյություն ունի սերտ կապ:  

Դիցուք 𝐗 -ը 𝒫 = {Pθ, θ ∈ Θ ⊂ ℛ} բաշխումների դասից Pθ բաշխմանը 

համապատասխանող նմուշ է: Դիտարկենք որոշակի θ0 ∈ Θ արժեքի հա-

մար 𝛼 նշանակալիության մակարդակով ℍ0 : θ = θ0 վարկածը ստուգող 

𝒳1𝛼(θ0) կրիտիկական տիրույթով որևէ հայտանիշ: Այդ հայտանիշի 

թույլատրելի տիրույթը նշանակենք 𝒳0𝛼(θ0) = 𝒳̅1𝛼(θ0)-ով: Այսպիսով, 

տվյալ 𝛼-ի համար 𝒳𝑛 նմուշային տարածությունում տրվում է {𝒳0𝛼(θ) ⊂

⊂ 𝒳𝑛, θ ∈ Θ} ենթաբազմությունների դասը:  

Կամայական 𝐱 = (𝑥1, 𝑥2, … , 𝑥𝑛 )
 ∈ 𝒳𝑛 նմուշային կետի համար սահ-

մանենք   

𝐺𝛾(𝐱) = {θ: 𝐱 ∈ 𝒳0𝛼(θ)} ⊂ Θ,  𝛾 = 1 − 𝛼 

բազմությունը: Այսպիսով, Θ պարամետրական բազմության մեջ առաջա-

նում է {𝐺𝛾(𝐱): 𝐱 ∈ 𝒳
𝑛} բազմությունների ընտանիքը: 

Այժմ դիտարկենք 𝐺𝛾(𝐗) պատահական բազմությունը: Քանի որ 

{θ ∈ 𝐺𝛾(𝐗)} և {𝐗 ∈ 𝒳0𝛼(θ)} պատահույթներն ըստ կառուցման համարժեք 

են, ապա` 

Pθ (θ ∈ 𝐺𝛾(𝐗)) = Pθ(𝐗 ∈ 𝒳0𝛼(θ)) = 𝛾,  

այնպես որ, 𝐺𝛾(𝐗) բազմությունը θ-ի համար 𝛾 մակարդակով վստահու-

թյան միջակայք է: Ճիշտ է նաև հակառակ պնդումը՝ եթե θ պարամետրի 

համար տրված է 𝛾 մակարդակով վստահության միջակայքերի {𝐺𝛾(𝐱): 𝐱 ∈

𝒳𝑛} ընտանիքը, ապա 𝒳0𝛼(θ0) = {𝐱 ∶  θ0 ∈ 𝐺𝛾(𝐱)} բազմությունը 𝛼 = 1 − 𝛾 

նշանակալիության մակարդակով ℍ0 : θ = θ0 վարկածը ստուգող հայտա-

նիշի թույլատրելի տիրույթ է:  

Այսպիսով, θ պարամետրի համար վստահության միջակայքերի կառուց-

ման և պարզ վարկածների ստուգման խնդիրները փոխադարձաբար հա-
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կադարձ են: Եթե որոշ մոդելի համար լուծվում է այդ խնդիրներից մեկը, 

ապա վերը նշված եղանակովով լուծվում է նաև մյուսը:  

Նշենք այստեղ, որ հավասարաչափ առավել հզոր (օպտիմալ) հայ-

տանիշին նրա գոյության դեպքում համապատասխանում է այսպես կոչ-

ված առավել ճշգրիտ վստահության միջակայքը (այսինքն, որի երկա-

րությունը տվյալ մակարդակով բոլոր վստահության միջակայքերի մեջ 

փոքրագույնն է (տե՛ս Боровков [1])):  

Մեկ նմուշի դեպքը 

Օրինակ 9.9: Դիցուք 𝑿 ~ ℕ(θ, σ2): Ստուգենք 𝛼 նշանակալիության 

մակարդակով ℍ0 : θ = θ0 վարկածն ընդդեմ ℍ1 : θ ≠ θ0 երկընտրանքա-

յինի:  

Համաձայն օրինակ 7.10-ի (տե՛ս [15]-ը)՝ 𝛾 = 1 − 𝛼 մակարդակով 

առավել ճշգրիտ վստահության միջակայքը θ պարամետրի համար               

𝐺𝛾(𝐱) = ( 𝐱̅  ∓  
σ

√𝑛
 𝑧𝛼 2⁄ )-ն է: Այնպես որ, ℍ0 վարկածը ստուգող 𝛼 չափ 

ունեցող  հայտանիշի  թույլատրելի  տիրույթը  𝒳0𝛼(θ0) = {𝐱: |𝐱̅ − θ0| 
√𝑛

σ
<

< 𝑧𝛼 2⁄ } բազմությունն է: Այսպիսով, 𝛼 չափ ունեցող հավասարաչափ 

առավել  հզոր  անշեղ  հայտանիշի  կրիտիկական  տիրույթը    𝒳1𝛼(θ0) = 

= {𝐱 : |𝐱̅ − θ0| 
√𝑛

σ
≥ 𝑧𝛼 2⁄ } բազմությունն է: Հետևաբար, եթե 𝐱 ∈ 𝒳1𝛼(θ0), 

ապա 𝛼 նշանակալիության մակարդակով ℍ0 վարկածը հերքվում է: Եթե 

𝐱 ∉ 𝒳1𝛼(θ0), 𝐗 նմուշի x արժեքը չի հակասում ℍ0 վարկածին և այն 

ընդունվում է:  

Օրինակ 9.10: Ստուգենք 𝐗 ~ ℕ(θ, σ2) նմուշի միջոցով 𝛼 նշանակա-

լիության մակարդակով ℍ0 : θ = θ0 պարզ վարկածն ընդդեմ ℍ1
+ : θ > θ0 

միակողմանի մրցող վարկածի: 

θ  պարամետրի  համար  օգտվենք   𝛾 = 1 − 𝛼  մակարդակով  𝐺𝛾(𝐱
 ) = 

= {θ: θ >  𝒙̅  −
σ

√𝑛
 𝑧𝛼}  ստորին  վստահության  միջակայքից  (տե՛ս  [15]-ի  

օրինակ  7.46 -ը):  Այստեղից  կստանանք, որ  𝛼  մակարդակով  վարկածը 
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ստուգող հայտանիշի թույլատրելի տիրույթը 𝒳0𝛼(θ0) = {𝐱 ∶  (𝐱̅ − θ0)
√𝑛

σ
<

< 𝑧𝛼} բազմությունն է: Այնպես որ, 𝒳1𝛼(θ0) = {𝐱 ∶  (𝐱̅ − θ0)
√𝑛

σ
≥ 𝑧𝛼} 

բազմությունը կլինի ℍ0 : θ = θ0 վարկածն ընդդեմ ℍ1
+ : θ > θ0 

երկընտրանքայինի ստուգող 𝛼 նշանակալիության մակարդակով հավա-

սարաչափ առավել հզոր հայտանիշի կրիտիկական տիրույթը:   

 

       Դիտողություն 9.4: Վերը նշված եղանակը, որը հիմնված էր վստա-

հության միջակայքերի և պարզ վարկածների ստուգման միջև կապի վրա, 

կարելի է օգտագործել նաև այն դեպքում, երբ պահանջվում է ստուգել 

վարկած  ( կամ ստանալ միջակայքային գնահատական)  բազմաչափ 

𝛉 ∈ ℛ𝑘 (𝑘 > 1) պարամետրի որոշ 𝛉1 ∈ ℛ𝑚(𝑚 < 𝑘) ենթավեկտորի վերա-

բերյալ (𝛉 = (𝛉1,  𝛉2), 𝛉2 ∈ ℛ𝑘−𝑚): Այդ դեպքում 𝛉2 վեկտորը կոչվում է 

«խանգարող» պարամետր: 

Օրինակ 9.11: Դիցուք 𝐗 ~ ℕ(θ1, θ2
2): Պահանջվում է 𝛼 նշանակալիու-

թյան մակարդակով ստուգել ℍ0: θ1 = θ10 վարկածն ընդդեմ ℍ1: θ1 ≠ θ10 

երկընտրանքային վարկածի (այստեղ θ2 > 0-ն «խանգարող» պարամետր է):  

Համաձայն օրինակ 7.45-ի (տե՛ս [15]-ը)՝ 𝛾 = 1 − 𝛼 վստահության 

մակարդակով առավել ճշգրիտ երկկողմանի վստահության միջակայքը 

θ1 պարամետրի համար 𝐺𝛾(𝐱)  = (𝐱̅  ∓ 
𝑠

√𝑛−1
 𝑡𝛼 2⁄ (𝑛 − 1))-ն է, որտեղ 𝑠-ը 

նմուշային ստանդարտ շեղումն է, իսկ 𝑡𝛼 2⁄ (𝑛 − 1)-ը՝ 𝕋(𝑛 − 1) բաշխման 

𝛼 2⁄  մակարդակով կրիտիկական արժեքը: Այժմ կիրառելով վերը նշված 

մեթոդը՝ կստանանք, որ 𝛼 չափ ունեցող ՀԱՀ և անշեղ հայտանիշը տրվում 

է 𝒳1𝛼(θ10) = {𝐱 ∶ |𝐱̅ − θ10|
√𝑛−1

𝑠
≥ 𝑡𝛼 2⁄ (𝑛 − 1)}  կրիտիկական տիրույթի 

միջոցքով:  

Երկու նմուշի դեպքը 

Հաճախ անհրաժեշտ է լինում համեմատել նորմալ բաշխում ունեցող 
երկու նմուշի միջինները և ցրվածքները: 

 

ա)  Միջինների համեմատություն (տե՛ս [15], § 7.5) 
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Օրինակ 9.12: Դիցուք 𝐗𝑛 ~ ℕ(θX, σX
2) և 𝐘𝑚~ ℕ(θY, σY

2) (θX ∈ ℛ, θY ∈ ℛ) 

հայտնի ցրվածքներով (σX > 0, σY > 0) միմյանցից անկախ նորմալ բաշ-

խումների դասերից 𝑛 և 𝑚 ծավալի նմուշներ են: Նշանակենք 𝜏 = θX − θY: 

Ստուգենք 𝛼 մակարդակով ℍ0 : 𝜏 = 𝜏0 վարկածն ընդդեմ ℍ1 : 𝜏 ≠ 𝜏0 

երկընտրանքայինի:  

Քանի որ  

𝐗̅ ~ ℕ(θX,
σX
2

𝑛
 ),    𝐘̅ ~ ℕ(θY,

σY
2

𝑚
 ) , 

և  𝐗̅ -ն ու 𝐘-ն անկախ են, ապա  𝐗̅ − 𝐘 ~ ℕ(𝜏, σ2), որտեղ 

𝜎2 = var (𝐗̅ − 𝐘) =
σX
2

𝑛
+ 
σY
2

𝑚
∶ 

Այստեղից կստանանք` 

Z =
 𝐗̅ − 𝐘 − τ

σ
 ~ ℕ(0, 1), 

 

որտեղից՝  P (|Z| < 𝑧𝛼 2⁄ ) = 1 − 𝛼 = 𝛾, այնպես որ՝ 

𝐺𝛾(𝐱𝑛, 𝐲𝑚) = {𝜏: 𝜏 ∈ (𝐱̅ − 𝐲̅  ∓  σ𝑧𝛼 2⁄ )} 

առավել ճշգրիտ վստահության միջակայքն է:  

Հետևաբար, վերը նշված 𝛼 նշանակալիության մակարդակով վար-

կածները ստուգող հավասարաչափ առավել հզոր հայտանիշի կրիտիկա-

կան տիրույթը կլինի`  𝒳1𝛼(𝜏0) = {(𝐱𝑛, 𝐲𝑚
 ): |𝑧0| ≥ 𝑧𝛼 2⁄ },  որտեղ 

 

𝑧0 =
𝐱̅ − y̅ − 𝜏0

σ
∶ 

 

Մասնավորապես, 𝛼 նշանակալիության մակարդակով ℍ0 : θX = θY վար-

կածն ընդդեմ ℍ1 : θX ≠ θY երկընտրանքայինի ստուգող ՀԱՀ հայտանիշը 

կունենա  

𝒳1𝛼 = {(𝐱𝑛, 𝐲𝑚
 ): |

 𝐱̅ − 𝐲̅ 

σ
| ≥ 𝑧𝛼 2⁄ }  

կրիտիկական տիրույթը: 
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Օրինակ 9.13: Դիցուք 𝐗𝑛 ~ ℕ(θX, θ
2) և 𝐘𝑚 ~ ℕ(θY, θ

2) (θX ∈ ℛ, θY ∈ ℛ) 

անհայտ և հավասար θ2 (θ > 0) ցրվածքներով նորմալ բաշխումների դա-

սերից վերցված միմյանցից անկախ նմուշներ են: 𝛼 նշանակալիության 

մակարդակով ստուգենք ℍ0 : 𝜏 = 𝜏0 վարկածն ընդդեմ ℍ1  : 𝜏 ≠ 𝜏0 

երկընտրանքայինի, որտեղ  𝜏 = θX − θY : 

Գտնենք 𝜏 պարամետրի համար 𝛾 = 1 − 𝛼 մակարդակով վստահու-

թյան միջակայքը (տե՛ս [15]-ի օրինակ 7.50-ը): 

Համաձայն պայմանների՝ ունենք`  
 

𝐗̅ − θX
θ

 ~ ℕ(0, 1 𝑛⁄ )   և   
𝐘 − θY
θ

 ~ ℕ(0, 1 𝑚⁄ ),  

 

որտեղից`  

 𝐗̅ − 𝐘 − τ

θ
 ~ ℕ (0,

1

𝑛
+
1

𝑚
 ) , 

այնպես որ՝ 

𝜉0 =√
𝑚𝑛

𝑚 + 𝑛
  
 𝐗̅ − 𝐘 − τ

θ
 ~ ℕ(0, 1): 

Մյուս կողմից, համաձայն Ֆիշերի թեորեմի (տե՛ս [15-ի թեորեմ 7.38-ը), 

𝑛𝑆𝑋
2

θ2
~ ℍ2(𝑛 − 1),    

𝑚𝑆𝑌
2

θ2
~ ℍ2(𝑚 − 1), 

որտեղ 

𝑆𝑋
2 = 

1

𝑛
∑(𝑋𝑖 − 𝐗̅ )

2,

𝑛

𝑖=1

    𝑆𝑌
2 =

1

𝑚
∑(𝑌𝑖 − 𝐘 )

2

𝑚

𝑖=1

 

 

նմուշային ցրվածքներն են, և քանի որ 𝐗𝑛 և 𝐘𝑚 նմուշները միմյանցից 

անկախ են, ապա  

𝜒𝑛+𝑚−2
2 =

1

θ2
(𝑛𝑆𝑋

2 +𝑚𝑆𝑌
2) ~ ℍ2(𝑛 +𝑚 − 2): 

 

Այնուհետև, Ստյուդենտի (𝒕 −) բաշխման սահմանումից կհետևի, որ  
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T = T𝑛+𝑚−2 =
𝜉0

√ 1
𝑛 +𝑚 − 2

 𝜒𝑛+𝑚−2
2

= 

 

=  
√
𝑛𝑚
𝑛 +𝑚 

(𝐗̅ − 𝐘 − 𝜏)

√ 1
𝑛 +𝑚 − 2 

√𝑛𝑆𝑋
2 +𝑚𝑆𝑌

2

 ~ 𝕋(𝑛 + 𝑚 − 2)  

կենտրոնական վիճականին վերը նշված վարկածները ստուգող հայ-

տանիշի վիճականին է: Ներկայացնենք այն 

T =
𝐗̅ − 𝐘 − 𝜏

𝑆𝑝 √
1
𝑛
+
1
𝑚
 

  

տեսքով, որտեղ  

𝑆𝑝
2 =

𝑛

𝑛 +𝑚 − 2
 𝑆𝑋
2  + 

𝑚

𝑛 +𝑚 − 2
 𝑆𝑌
2 

վիճականին կոչվում է դիտարկվող նորմալ մոդելների ընդհանուր θ2 

ցրվածքի համար միավորված («pooled») գնահատական: Դժվար չէ տես-

նել, որ 𝑆𝑝
2 վիճականին անշեղ և խիստ ունակ գնահատական է θ2 պարա-

մետրի համար: 

Այսպիսով, առավել ճշգրիտ 𝛾 = 1 − 𝛼 մակարդակով վստահության 

միջակայքը 𝜏 պարամետրի համար կլինի՝ 

𝐺𝛾(𝐱𝑛, 𝐲𝑚) = {𝜏: 𝜏 ∈ (𝐱̅ − 𝐲̅  ∓ √
1

𝑛
+
1

𝑚
 𝑆𝑝 𝑡𝛼 2⁄ (𝑛 +𝑚 − 2))}: 

Այստեղից հետևում է, որ 𝛼 նշանակալիության մակարդակով                    

ℍ0 : 𝜏 = 𝜏0 վարկածն ընդդեմ ℍ1 : 𝜏 ≠ 𝜏0 երկընտրանքայինի ստուգող ՀԱՀ 

հայտանիշը կունենա հետևյալ կրիտիկական տիրույթը՝ 

𝒳1𝛼(𝜏0) = {(𝐱𝑛, 𝐲𝑚
 ): |𝑡0| ≥ 𝑡𝛼 2⁄ (𝑛 + 𝑚 − 2)},  

որտեղ 
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 𝑡0 = T (𝜔0) =
𝒙̅ − 𝐲̅ − 𝜏0

𝑠𝑝√
1
𝑛 +

1
𝑚 

 ,   𝑠𝑝
2 =

𝑛

𝑛 +𝑚 − 2
 𝑠𝑋
2 +

𝑚

𝑛 +𝑚 − 2
 𝑠𝑌
2 ∶ 

 

Մասնավոր դեպքում, երբ 𝜏0 = 0, 𝛼 նշանակալիության մակարդակով ℍ0: 

θX = θY վարկածն ընդդեմ ℍ1 : θX ≠ θY երկընտրանքայինի ստուգող ՀԱՀ 

հայտանիշը կունենա հետևյալ կրիտիկական տիրույթը՝ 

 𝒳1𝛼 =

{
 

 
(𝐱𝑛, 𝐲𝑚): ||

 𝐱̅ − 𝐲̅ 

𝑠𝑝√
1
𝑛 +

1
𝑚 

|| ≥ 𝑡𝛼 2⁄ (𝑛 + 𝑚 − 2)

}
 

 

∶  

Օրինակ 9.14 (Բերենս−Ֆիշերի պրոբլեմ (տե՛սЛеман [9])): Դիտարկենք 

𝐗𝑛~ ℕ(θ1X, θ2X
2 ) և 𝐘𝑚~ ℕ(θ1Y, θ2Y

2 ) (θ1X ∈ ℛ,  θ1Y ∈ ℛ, θ2X > 0,  θ2Y > 0) ան-

հայտ և տարբեր ցրվածքներով նորմալ բաշխումներից միմյանցից անկախ 

նմուշներ: ℍ0: 𝜏 = 𝜏0 վարկածն ընդդեմ ℍ1 : 𝜏 ≠ 𝜏0 երկընտրանքայինը 

(𝜏 = θ1X − θ1Y) ստուգելուն վերաբերող խնդիրը հայտնի է որպես Բերենս 

− Ֆիշերի պրոբլեմ:  

Պարզվում է (տե՛ս Montgomery, Runger [23]), որ այս խնդիրը լուծելու 

համար որպես հայտանիշի վիճականի կարելի է վերցնել՝  

T = T𝑛,𝑚 =
𝐗̅ − 𝐘 − 𝜏

𝑆0√
1
𝑛
+
1
𝑚
 

  (𝑆0
2 =

𝑆𝑋
2

𝑛 − 1
+

𝑆𝑌
2

𝑚 − 1
), 

պատահական մեծությունը, որը «մոտարկվում» է 𝝂 ազատությունների 

աստիճանով Ստյուդենտի բաշխումով՝ T ↝ 𝕋(𝜈 ), որտեղ  

𝜈 =
𝑠0
4

[𝑠𝑋
2 (𝑛 − 1⁄ )]2

𝑛 − 1  + 
[𝑠𝑌
2 (𝑚 − 1⁄ )]2

𝑚 − 1

 ,   𝑆0(𝜔0) = 𝑠0: 

Այնպես որ, 𝛼 նշանակալիության մակարդակով ℍ0 : 𝜏 = 𝜏0 վարկածն 

ընդդեմ ℍ1 : 𝜏 ≠ 𝜏0 երկընտրանքայինի ստուգող հայտանիշի կրիտկական 

տիրույթը կլինի  
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 𝒳1𝛼(𝜏0) =

{
 

 
(𝐱𝑛, 𝐲𝑚): ||

𝐱̅ − 𝐲̅ − 𝜏0

𝑠0 √
1
𝑛
+
1
𝑚
 

|| ≥ 𝑡𝛼 2⁄ (𝜈)

}
 

 

  

բազմությունը: 

Մասնավորապես, 𝛼 նշանակալիության մակարդակով ℍ0 : θ1X = θ1Y 

վարկածն ընդդեմ ℍ1 : θ1X ≠ θ1Y երկընտրանքայինի ստուգող հայտանիշի 

կրիտիկական տիրույթը  
 

𝒳1𝛼 =

{
 

 
(𝐱𝑛, 𝐲𝑚): ||

 𝐱̅ − 𝐲̅ 

𝑠0√
1
𝑛 +

1
𝑚 

|| ≥ 𝑡𝛼 2⁄ (𝜈)

}
 

 

 

բազմությունն է:  

Ասիմպտոտիկ դեպք         

Հաճախ պահանջվում է մեծ ծավալի նմուշների դեպքում ստուգել 

երկու անհայտ բաշխումների միջինների վերաբերյալ վարկածը: 

Օրինակ 9.15: Դիցուք 𝐗𝑛-ը և 𝐘𝑚-ը որոշակի (անհայտ) բաշխումներից 

վերցված միմյանցից անկախ նմուշներ են: Այդ բաշխումների անհայտ 

միջինները նշանակենք θX = E(𝐗1) և θY = E(𝐘1) ու դիտարկենք 𝜏 = θX − θY 

տարբերությունը: Մեծ 𝑛 և 𝑚 ծավալի (𝑛,𝑚 > 30) նմուշների դեպքում 

ստուգենք 𝛼 մակարդակով ℍ0 : 𝜏 = 𝜏0 վարկածն ընդդեմ ℍ1 : 𝜏 ≠ 𝜏0 

երկընտրանքայինի:  

Համաձայն ԿՍԹ-ի՝ տեղի ունեն հետևյալ ըստ բաշխման զուգամի-

տությունները՝ 

√𝑛 (𝐗̅ − θX)  
𝑑
→  ℕ(0, σX

2)   և   √𝑚 (𝐘 − θY)  
𝑑
→  ℕ(0, σY

2),  𝑛 → ∞,  𝑚 → ∞, 

որտեղ  σX
2 = var(𝐗),  σY

2 = var(𝐘): Այստեղից հետևում է, որ 

 
𝐗̅ − 𝐘 − 𝜏

σ
 
𝑑
→  ℕ(0,1),   𝑛 → ∞,   𝑚 → ∞,                            (9.36) 

որտեղ  σ2 = 
σX
2

𝑛
+
σY
2

𝑚
 :  
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Նշանակենք՝  

𝑆2 = 
𝑆𝑋
2

𝑛
 + 
𝑆𝑌
2

𝑚
 ,   𝑆𝑋

2 =
1

𝑛
∑(𝑋𝑖 − 𝐗̅)

2

𝑛

𝑖=1

,   𝑆𝑌
2 =

1

𝑚
∑(𝑌𝑖 − 𝐘)

2:

𝑚

𝑖=1

 

Օգտվելով անընդհատության թեորեմներից (տե՛ս [15], թեորեմ Հ. 2.2)՝ 

հեշտ է տեսնել, որ (9.36)-ից բխում է հետևյալ զուգամիտությունը՝ 

 𝐙 = 𝐙𝒏,𝒎 =
𝐗̅ − 𝐘 − 𝜏

𝑆
 
𝑑
→  ℕ(0,1),   𝑛 → ∞,   𝑚 → ∞ ∶             (9.37)  

(9.37) զուգամիտությունը նշանակում է, որ Z վիճականին ասիմպտո-

տիկ ոչ պարամետրական է: Այսինքն՝ 𝜏 պարամետրի համար կարելի է 

գտնել 𝛾 = 1 − 𝛼 մակարդակով ասիմպտոտիկ վստահության միջակայքը՝ 

P (|𝐙 | < 𝑧𝛼 2⁄ ) → 𝛾,  𝑛 → ∞, 𝑚 → ∞, 

որտեղից՝ 

𝐺𝛾(𝐱𝑛, 𝒚𝑚) = {𝜏: 𝜏 ∈ (𝐱̅ − 𝐲̅  ∓  𝑆𝑧𝛼 2⁄ )}: 

Այնպես որ, 𝛼 նշանակալիության մակարդակով ℍ0 : 𝜏 = 𝜏0 վարկածն ընդ-

դեմ ℍ1 : 𝜏 ≠ 𝜏0 երկընտրանքայինի ստուգող ասիմպտոտիկ հայտանիշի 

կրիտկական տիրույթը կտրվի  
 

    𝒳1𝛼(𝜏0) = {(𝐱𝑛, 𝒚𝑚): |𝑧0| ≥ 𝑧𝛼 2⁄ } 
 

տեսքով,որտեղ  𝑧0 = 𝐙(𝜔0) =
𝐱̅ − 𝐲̅ − 𝜏0

𝑠
 ,  𝑠2 =

𝑠𝑥
2

𝑛
+
𝑠𝑦
2

𝑚
∶ 

Մասնավոր դեպքում ℍ0 : θX = θY վարկածն ընդդեմ ℍ1 : θX ≠ θY 

մրցող վարկածի ստուգող 𝛼 նշանակալիության մակարդակով հայտա-

նիշի կրիտկական տիրույթը կլինի հետևյալ բազմությունը՝ 

 𝒳1𝛼 = {(𝐱𝑛, 𝒚𝑚): |
 𝐱̅ − 𝐲̅ 

𝑠
| ≥ 𝑧𝛼 2⁄ } ∶  

Օրինակ 9.16: Դիցուք 𝐗𝑛 ~ 𝔹er (θX) և 𝐘𝑚 ~ 𝔹er (θY) անհայտ θX և θY 

պարամետրերով (0 < θX < 1, 0 < θY < 1) Բեռնուլիի բաշխումների դասե-

րից վերցված միմյանցից անկախ նմուշներ են: Նմուշների մեծ 𝑛 և 𝑚 

ծավալների դեպքում 𝛼 նշանակալիության մակարդակով ստուգենք           

ℍ0 : θX = θY վարկածն ընդդեմ ℍ1 : θX ≠ θY երկընտրանքայինի:  
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        Համաձայն Մուավր –Լապլասի ինտեգրալային սահմանային թեո-

րեմի՝ մեծ 𝑛-երի և 𝑚-երի դեպքում ճիշտ են հետևյալ սահմանային ներ-

կայացումները` 

             
𝐗̅ − θX

√θX(1 − θX)
 ↝  ℕ(0, 1 𝑛⁄ )   և   

𝐘 − θY

√θY(1 − θY)
 ↝  ℕ(0, 1 𝑚⁄ ):          (9.38) 

Այժմ, ենթադրելով, որ ℍ0 վարկածը ճիշտ է, այսինքն՝ θX = θY = θ, 

(9.38)-ից, կստանանք`  
 

𝐗̅ − 𝐘

√(
1
𝑛 +

1
𝑚)θ

(1 − θ) 

 
𝑑
→  ℕ(0,1) ,   𝑛 → ∞,   𝑚 → ∞: 

 

Այնուհետև, վերցնելով որպես θ պարամետրի գնահատական  

 θ̂ = θ̂n,m =
𝑛

𝑛 +𝑚
 𝐗̅  + 

𝑚

𝑛 +𝑚
 𝐘 

վիճականին (որն անշեղ և խիստ ունակ գնահատական է θ-ի համար), 

կստանանք հետևյալ զուգամիտությունը՝ 

ℤ𝒏,𝒎 =
 𝑿̅ − 𝐘

√(
1
𝑛 +

1
𝑚)θ

(1 − θ) 

 
𝑑
→  ℕ(0, 1),   𝑛 → ∞,   𝑚 → ∞, 

այսինքն՝ 𝐙𝒏,𝒎-ը ասիմպտոտիկ ոչ պարամետրական վիճականի է:  

Այնպես որ ասիմպտոտիկ 𝛂 չափ ունեցող հայտանիշը կտրվի    
 

 𝒳1𝛼(𝜏0)  =  {(𝐱𝑛, 𝒚𝑚): |𝑧𝑛,𝑚| ≥ 𝑧𝛼 2⁄ } ,   𝑧𝑛,𝑚 = 𝐙𝑛,𝑚(𝜔0) = 
 

 

=
𝐱̅ − 𝐲̅

√(
1
𝑛 +

1
𝑚)θ

(1 − θ) 

  

 

կրիտիկական տիրույթի միջոցով:  

 

բ)  Ցրվածքների համեմատություն 

Օրինակ 9.17:   Դիցուք   𝐗𝑛 ~  ℕ(θ1X, θ2X
2 )   և   𝐘𝑚 ~  ℕ(θ1Y, θ2Y

2 )   (θ1X ∈

 ∈ ℛ,  θ1Y ∈ ℛ,  θ2X > 0,  θ2Y > 0) նորմալ  բաշխումների դասերից վերցված 
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միմյանցից անկախ նմուշներ են: 𝛼 նշանակալիության մակարդակով 

գտնենք ℍ0 ∶  θ2X
2 = θ2Y

2  վարկածն ընդդեմ ℍ1 ∶ θ2X
2 ≠ θ2Y

2  երկընտրանքա-

յինի ստուգող հայտանիշը (տե՛ս [15]-ի օրինակ 7.51-ը):  

Համաձայն Ֆիշերի թեորեմի (տե՛ս [15]-ի թեորեմ 7.38-ը)՝ ունենք`  
 

 𝜒𝑛−1
2 = 

(𝑛 − 1)𝑆0𝑋
2

θ2X
2  ~ ℍ2(𝑛 − 1),   𝜒𝑚−1

2 =
(𝑚 − 1)𝑆0𝑌

2

θ2Y
2  ~ ℍ2(𝑚 − 1), 

որտեղ 

 𝑆0𝑋
2 =

1

𝑛 − 1
∑(𝑋𝑖 − 𝐗̅ )

2

𝑛

𝑖=1

,   𝑆0𝑌
2 =

1

𝑚 − 1
∑(𝑌𝑖 − 𝐘 )

2

𝑚

𝑖=1

  

 

անշեղ նմուշային ցրվածքներն են: Ֆիշեր –Սնեդեկորի ( 𝑭 −) բաշխման 

սահմանումից (տե՛ս [15]-ի § 2.4-ը) կստանանք`  

 𝑆𝑛−1,𝑚−1 =

1
𝑛 − 1 𝜒𝑛−1

2

1
𝑚 − 1 𝜒𝑚−1

2
=
𝑆0𝑋
2

𝑆0𝑌
2 ∙
θ2Y
2

θ2X
2  ~ 𝕊(𝑛 − 1,𝑚 − 1): 

Այստեղից, նշանակելով 𝜏 =
θ2X 
2

θ2Y
2  , գտնենք 𝜏-ի համար 𝛾 = 1 − 𝛼 մա-

կարդակով կենտրոնական վստահության միջակայքը:  

P (𝑆1 − 𝛼 2⁄ (𝑛 − 1,𝑚 − 1) ≤ 𝑆𝑛−1,𝑚−1 ≤ 𝑆 𝛼 2⁄ (𝑛 − 1,𝑚 − 1)) = 𝛾 

պայմանից հետևում է, որ  

𝐺𝛾(𝐱𝑛, 𝐲𝑚) = {𝜏 ∶  𝜏 ∈ (
𝑆0𝑋
2

𝑆0𝑌
2  𝑆1 − 𝛼 2⁄ (𝑚 − 1, 𝑛 − 1),

𝑆0𝑋
2

𝑆0𝑌
2  𝑆𝛼 2⁄ (𝑚 − 1, 𝑛 − 1) )}-ը 

որոնելի վստահության միջակայքն է: Եվ քանի որ ℍ0 վարկածը բավա-

րարվելու դեպքում  
𝑆0𝑋
2

𝑆0𝑌
2  ~ 𝕊(𝑛 − 1,𝑚 − 1), ապա 𝛼 նշանակալիության մա-

կարդակով վարկածը ստուգող հայտանիշի կրիտիկական տիրույթը 

կլինի՝ 

𝒳1𝛼 = {(𝐱𝑛, 𝒚𝑚): 
𝑠0𝑥
2

𝑠 0𝑦
2  ≤ 𝑆1 − 𝛼 2⁄ (𝑛 − 1,𝑚 − 1) ∪  

𝑠0𝑥
2

𝑠 0𝑦
2  ≥ 𝑆𝛼 2⁄ (𝑛 − 1,𝑚 − 1)}:  
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       Խնդիրներ 

 

9.12. Դիցուք  𝐗 ~ ℕ(𝑚, θ2) : 𝛼 նշանակալիության մակարդակով ստու-

գել  ℍ0 ∶  θ
2 = θ0

2  վարկածն ընդդեմ  ℍ1 : θ
2 ≠ θ0

2  երկընտրանքայինի: 
 

Ցուցում՝ օգտվել [15]-ի օրինակ 7.43-ից և օրինակ 9.8-ից:  

Պատասխան՝ 

  𝒳1𝛼(𝜃0) =  {𝒙 ∶  
1

θ0
2∑(𝑥𝑖 −𝑚)

2 < 𝜒1−𝛼1
2 (𝑛)

𝑛

𝑖=1

 ∪  
1

θ0
2∑(𝑥𝑖 −𝑚)

2 > 𝜒𝛼2
2 (𝑛)

𝑛

𝑖=1

}  

հայտանիշի կրիտիկական տիրույթն է, որտեղ  𝛼1 + 𝛼2 = 𝛼  և  
𝜒𝛼2
2 (𝑛)

𝜒1−𝛼1
2 (𝑛)

=

exp { 
1

𝑛
(𝜒𝛼2

2 (𝑛) − 𝜒1−𝛼1
2 (𝑛))} :  

9.13. Դիցուք 𝐗 ~ ℕ(θ1, θ2
2): 𝛼 նշանակալիության մակարդակով գտնել 

ℍ0 ∶  θ1 = θ10 պարզ վարկածն ընդդեմ ℍ1
+ ∶  θ1 > θ10 (ℍ1

−: θ1 < θ10) բարդ 

միակողմանի երկընտրանքայինի ստուգող ՀԱՀ հայտանիշը: 
 

Ցուցում՝ օգտվել ([15]-ի օրինակ 7.48-ից):  

Պատասխան՝  

            𝒳1𝛼(𝜃10) = {𝐱 ∶ ( 𝐱̅ − θ10)
√𝑛

𝑠
> 𝑡𝛼(𝑛 − 1)},    (𝒳1𝛼(𝜃10) = {𝐱 ∶  ( 𝐱̅ − θ10) 

√𝑛

𝑠
<

 < − 𝑡𝛼(𝑛 − 1)}): 

9.14. Դիցուք  𝐗 ~ 𝕌(0, θ) (θ > 0) նմուշ է [0, θ] միջակայքում հավասա-

րաչափ բաշխումից: 𝛼 նշանակալիության մակարդակով գտնել ℍ0 : 

θ = θ0 վարկածն ընդդեմ ℍ1 : θ ≠ θ0 երկընտրանքայինի ստուգող ՀԱՀ 

հայտանիշը: 
 

Ցուցում՝ օգտվել ([15] -ի օրինակ 7.19-ից): 

Պատասխան՝  𝒳1𝛼 = {𝐱 ∶  𝑥(𝑛) ≤ θ0 √𝛼
𝑛
 ∪  𝑥(𝑛) ≥ θ0}:  

 9.15. Դիցուք  𝐗𝑛
  ~ ℕ(θ1X, θ2X

2 ) և 𝐘𝑛 ~ ℕ(θ1Y, θ2Y
2 ) անհայտ պարամետ-

րերով նորմալ բաշխումների դասերից վերցված միմյանցից անկախ և 

միևնույն ծավալ ունեցող նմուշներ են: 𝛼 նշանակալիության մակար-

դակով ստուգել հետևյալ վարկածները՝  

ա) ℍ0 : 𝜏 = 𝜏0  ընդդեմ  ℍ1 : 𝜏 ≠ 𝜏0,  
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բ)  ℍ0 : 𝜏 = 𝜏0  ընդդեմ  ℍ1
− : 𝜏 < 𝜏0,  

գ)  ℍ0 : 𝜏 = 𝜏0  ընդդեմ  ℍ1
+ : 𝜏 > 𝜏0, որտեղ  𝜏 = θ1X − θ1Y: 

 

Ցուցում՝ օգտվել ([15]-ի օրինակ 7.52-ից):  

Պատասխան՝ 

ա) 𝒳1𝛼 = {(𝐱𝑛, 𝒚𝑛): |𝑡0|  ≥ 𝑡𝛼 2⁄ (𝑛 − 1)},  

բ) 𝒳1𝛼
−  = {(𝐱𝑛, 𝐲𝑛

 ): 𝑡0 ≤ − 𝑡𝛼(𝑛 − 1)} ,  

գ) 𝒳1𝛼
+ = {(𝐱𝑛, 𝒚𝑛 ): 𝑡0  ≥ 𝑡𝛼(𝑛 − 1)}, որտեղ  𝑡0 = 

𝐳̅ – 𝜏0

𝑠𝑧
√𝑛 − 1 , 

               𝑠𝑧
2  =  

1

𝑛
 ∑(𝑧𝑖 − z̅)

2,

 

 

 z̅ =  x̅  −  y̅,   zi = xi − yi:  

 

       § 9.6.  Ճշմարտանմանության հարաբերության հայտանիշը և 

       դրա որոշ կիրառությունները 

 

Դիցուք 𝐗 ~ P𝛉 ∈ 𝒫` P𝛉 բաշխմանը համապատասխանող 𝑛 ծավալի 

նմուշ է: Ենթադրենք P𝛉 բաշխումը բացարձակ անընդհատ է (կամ 

դիսկրետ):  Դիտարկենք 

 ℍ0 : 𝛉 ∈ Θ0 ⊂ ℛ
𝑘 ընդդեմ  ℍ1 : 𝛉 ∈ Θ1 ⊂ ℛ

𝑘 (𝑘 ≥ 1)       (9.39)  

բարդ վարկածների ստուգման խնդիրը, որտեղ  

Θ0 ∪ Θ1 = Θ ⊂ ℛ𝑘,  Θ0 ∩ Θ1 = ∅: 

Ճշմարտանմանության հարաբերություն (ՃՀ) վիճականի (տե՛ս § 9.1) 

կոչվում է հետևյալ պատահական մեծությունը` 

 Λ = Λ(𝐗) =

sup
𝛉∈Θ1

𝑓𝛉(𝐗)

sup
𝛉∈Θ0

𝑓𝛉(𝐗)
 (

sup
𝛉∈Θ1

𝑝𝛉(𝐗)

sup
𝛉∈Θ0

𝑝𝛉(𝐗)
) : 

 Դիտարկենք Λ -ին համարժեք 

Λ′ = Λ′(𝐗, Θ0) =

sup
𝛉∈Θ

𝑓𝛉(𝐗)

sup
𝛉∈Θ0

𝑓𝛉(𝐗)
 (

sup
𝛉∈Θ

𝑝𝛉(𝐗)

sup
𝛉∈Θ0

𝑝𝛉(𝐗)
) (Λ′ = max(1, Λ))  

վիճականին և առավել հաճախ կիրառվող հետևյալ վիճականին` 



ԳԼՈՒԽ 9. ՊԱՐԱՄԵՏՐԱԿԱՆ ՎԱՐԿԱԾՆԵՐ 

70 

 Λ̅ = Λ̅(𝐗, Θ0) = 1 Λ
′(X, Θ0)⁄ =

sup𝛉∈Θ0 𝑓𝛉(𝐗)

sup𝛉∈Θ 𝑓𝛉(𝐗)
 (
sup𝛉∈Θ0 𝑝𝛉(𝐗)

sup𝛉∈Θ𝑝𝛉(𝐗)
):              (9.40)  

(9.39) վարկածների ստուգման խնդրին համապատասխանող  

 𝒳1𝛼 =𝒳1𝛼(Θ0) = {𝐱 ∶  𝜆̅(𝐱, Θ0) ≤ 𝑐𝛼} (Λ̅(𝐗(𝜔0), Θ0) = 𝜆̅(𝐱, Θ0))   (9.41) 

կրիտիկական տիրույթով տրվող հայտանիշը կոչվում է ճշմարտանմա-

նության հարաբերության (ՃՀ) հայտանիշ, որտեղ 𝑐 = 𝑐𝛼 կրիտիկական 

եզրն ընտրվում է այնպես, որ հայտանիշն ունենա տվյալ 𝛼 (0 < 𝛼 < 1) 

չափ՝  

ℙ𝛉(𝐗 ∈ 𝒳1𝛼) = ∫ 𝑓𝛉(𝐱)𝑑𝐱
 = Pθ( Λ̅

 ≤ 𝑐𝛼) = 𝛼,   𝛉 ∈ Θ0: 

 

𝒳1𝛼

 

Ի տարբերություն Նեյման - Պիրսոնի հայտանիշի (տե՛ս թեորեմ 9.1-

ը)՝ ՃՀ հայտանիշը, սովորաբար, օպտիմալ չէ, սակայն որոշ պայմանների 

դեպքում այն ասիմպտոտիկ օպտիմալ է: 

Դիտողություն 9.5: 1. 𝒳1𝛼 կրիտիկական տիրույթի (9.41) տեսքը բա-

ցատրվում է հետևյալ կերպ՝ եթե 𝐗(𝜔0) = 𝐱 դեպքում ℍ0 վարկածը հերք-

վում է, ապա (9.40) արտահայտության հայտարարը կընդունի համարի-

չից «մեծ» արժեք, հետևաբար՝ Λ̅(𝐗, Θ0) վիճականին կընդունի համապա-

տասխանաբար «փոքր»  𝜆̅(𝐱) = 𝜆̅(𝐱 , Θ0) արժեք:   

2. ՃՀ հայտանիշի կիրառման դժվարությունը բացատրվում է այն 

հանգամանքով, որ փոքր 𝑛-երի դեպքում, սովորաբար, անհնարին է լի-

նում գտնել  Λ̅  վիճականու բաշխման ճշգրիտ տեսքը: 

Փոքր նմուշների դեպք 

Օրինակ 9.18: Դիցուք դիտվում է 𝐗 ~ ℕ(θ1, θ2
2) նմուշը: 𝛼 նշանակա-

լիության մակարդակով ՃՀ հայտանիշի օգնությամբ ստուգենք 

                  ℍ0 : θ1 = θ10  վարկածն ընդդեմ  ℍ1 : θ1 ≠ θ10  

երկընտրանքայինի (θ2-ը «խանգարող» պարամետր է): 

       Խնդրին համապատասխանող պարամետրական բազմություններն են՝ 

Θ = {𝛉 = (θ1,  θ2) : − ∞ < θ1 < ∞, θ2 > 0},  
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Θ0 = {𝛉 = (θ1,  θ2): θ1 = θ10, θ2 > 0},  Θ1 = {𝛉 = (θ1,  θ2): θ1 ≠ θ10, θ2 > 0}: 

  𝐗  նմուշին համապատասխանող ճշմարտանմանության ֆունկցիան է՝  

 𝑓θ(𝐗) = (2𝜋)
−𝑛 2⁄ (θ2

2)−𝑛 2⁄  exp {−
1

2θ2
2∑(𝑋𝑖 − θ1)

2

𝑛

𝑖=1

}: 

Հայտնի է (տե՛ս [15]­ի օրինակ 5.51­ը), որ 

 sup
𝛉∈Θ

𝑓𝛉(𝐗) = 𝑓𝛉̂(𝐗),  

որտեղ  𝛉̂ = (𝐗̅ , 𝑆
2) ­ն  𝛉  պարամետրի ՃՄ գնահատականն  է, և  𝑓𝛉̂(𝐗) = 

= (2𝜋𝑒𝑆2)−𝑛 2⁄ : 

Մյուս կողմից պարզ է, որ  

sup
𝛉∈Θ0

𝑓𝛉(𝐗) =  (2𝜋𝑒𝑆1
2)−𝑛 2⁄ ,   որտեղ  𝑆1

2 = 
1

𝑛
 ∑(𝑋𝑖 − θ10)

2

𝑛

𝑖=1

∶ 

 Այժմ, օգտվելով  𝑆1
2 = 𝑆2 + (𝐗̅ − θ10)

2  ներկայացումից, կստանանք` 

 Λ̅ = (
𝑆1
2

𝑆2
)

− 𝑛 2⁄

= (1 +
(𝐗̅ − θ10)

2

𝑆2
)

− 𝑛 2⁄

= (1 +
𝑇𝑛−1
2

𝑛 − 1
)

− 𝑛 2⁄

, 

որտեղ, ըստՍտյուդենտի թեորեմի (տե՛ս [15])`  

                                       𝑇𝑛−1 =
𝐗̅− θ10

𝑆
 ∙ √𝑛 − 1 ~ 𝕋(𝑛 − 1): 

Այստեղից՝  

(λ̅ ≤ 𝑐) = (𝑡𝑛−1
2 ≥ 𝑐1

2) = (|𝑡𝑛−1| ≥ 𝑐1),  λ̅
  = 𝜆̅(𝐱 , Θ0),  𝑡𝑛−1 = 𝑇𝑛−1(𝜔0), 

այնպես որ 𝛼 նշանակալիության մակարդակով ՃՀ հայտանիշի կրիտի-

կական եզրն է c1 = tα 2⁄ (𝑛 − 1): Այսպիսով, ՃՀ հայտանիշի կրիտիկական 

տիրույթը համընկնում է օրինակ 9.11-ում ստացված՝ 

𝒳1𝛼(θ10) = {𝐱 ∶  |𝐱̅ − θ10|
√𝑛 − 1

𝑠
≥ 𝑡𝛼 2⁄ (𝑛 − 1)} 

ՀԱՀ հայտանիշի կրիտիկական տիրույթի հետ:    

Օրինակ 9.19: 𝐗 ~ ℕ(θ1, θ2
2) նմուշի միջոցով, օգտվելով ՃՀ հայտանի-

շից, 𝛼 նշանակալիության մակարդակով ստուգենք ℍ0 : θ2 = θ20 վար-
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կածն ընդդեմ ℍ1 : θ2 ≠ θ20 երկընտրանքայինի (θ1-ը «խանգարող» պարա-

մետր է):  

   Այստեղ՝  Θ = {𝛉 = (θ1, θ2): θ1 ∈ ℛ, θ2 > 0},   Θ0 = {𝛉𝟎 = (θ1, θ20):  θ1 ∈ ℛ}:  

 Հեշտ է տեսնել (համեմատել օրինակ 9.18-ի հետ), որ 

sup
𝛉∈Θ

𝑓𝛉(𝐗) = 𝑓𝛉̂(𝐗) =  (2𝜋𝑒𝑆
2)−𝑛 2⁄ ,  

 sup
𝛉∈Θ0

𝑓𝛉(𝐗) =  (2𝜋θ20
2 )−𝑛 2⁄ exp {− 

𝑛

2θ20
2 𝑆

2}: 

Այստեղից կստանանք` 

Λ̅  =  

sup
𝛉∈Θ0

𝑓θ(𝐗)

sup
𝛉∈Θ

𝑓θ(𝐗)
= (𝑇𝑒− 𝑇 + 1)𝑛 2⁄ ,     𝑇 =

𝑆2

θ20
2 ∶ 

𝑦 = 𝑡𝑒− 𝑡 +1 ֆունկցիայի գրաֆիկի տեսքից` 

 

 

 

 

 

 

 

 

 

 

 

հեշտ է նկատել, որ (λ̅ ≤ 𝑐), 0 < 𝑐 < 1 բազմությունը համարժեք է (𝑡 ≤ 𝑡1 ∪

∪ 𝑡 ≥ 𝑡2) բազմությանը, այնպես որ 𝛼 չափ ունեցող ՃՀ հայտանիշի կրի-

տիկական տիրույթը կունենա հետևյալ տեսքը՝ 

𝑡 0 

𝑐 

𝑦 

1 𝑡1 𝑡2 

1 



§ 9.6. Ճշմարտանմանության հարաբերության հայտանիշը և 

դրա որոշ կիրառությունները 

73 

𝒳1𝛼(θ0) = {𝐱 ∶  
𝑠2

θ20
2 ≤ 𝑡1 ∪ 

𝑠2

θ20
2 ≥ 𝑡2} ,   𝑠 = 𝑆(𝜔0),   0 < 𝑡1 < 𝑡2 ∶ 

Ըստ Ֆիշերի թեորեմի (տե՛ս [15])` 𝜒𝑛−1
2 = 

𝑛𝑆2

θ2
2  ~ ℍ2(𝑛 − 1) և հայտա-

նիշի հզորության ֆունկցիան կլինի 

𝑊𝜑(θ) = Pθ (
𝑆2

θ20
2  ≤ 𝑡1 ∪ 

𝑆2

θ20
2  ≥ 𝑡2) =

= Pθ (
𝑆2

θ2
2  ≤

θ20
2

θ2
2  𝑡1) + 1 − Pθ (

𝑆2

θ2
2  ≤

θ20
2

θ2
2  𝑡2) = 

 

= H𝑛−1 (
𝑛θ20
2

θ2
2  𝑡1) + 1 − H𝑛−1 (

𝑛θ20
2

θ2
2  𝑡2) ,   որտեղ  H𝑛−1(𝑡) = P(𝜒𝑛−1

2 < 𝑡): 

Եթե ℍ0 վարկածը ճիշտ է, ապա, վերցնելով 𝑡1 =
1

𝑛
𝜒1−𝛼1
2 (𝑛 − 1),               

𝑡2 =
1

𝑛
𝜒𝛼2
2 (𝑛 − 1),  𝛼1 + 𝛼2 = 𝛼, կստանանք` 𝑊𝜑(θ0) = 𝛼: 

Այսպիսով, ՃՀ հայտանիշի կրիտիկական տիրույթն ընդունում է 

հետևյալ տեսքը՝ 

𝒳1𝛼(θ0) = {𝐱 ∶  
𝑛𝑠2

θ20
2 ≤ 𝜒1−𝛼1

2 (𝑛 − 1) ∪  
𝑛𝑠2

θ20
2 ≥ 𝜒𝛼2

2 (𝑛 − 1)}: 

Որպեսզի հայտանիշը լինի անշեղ, պետք է պահանջել, որ 𝑊𝜑
′(𝜃0) = 0, 

այսինքն՝ 

 𝑊𝜑
′(θ0) = 𝜒1−𝛼1

2 (𝑛 − 1)ℎ𝑛−1 ( 𝜒1−𝛼1
2 (𝑛 − 1)) − 

− 𝜒𝛼2
2 (𝑛 − 1)ℎ𝑛−1 (𝜒𝛼2

2 (𝑛 − 1)) = 0:   

Օրինակ 9.20: Դիցուք 𝐗 ~ 𝔼(θ) նմուշ է վերցված ցուցչային բաշխում-

ների դասից: 𝛼 նշանակալիության մակարդակով ՃՀ հայտանիշի օգնու-

թյամբ ստուգենք  ℍ0
− : θ ≤ θ0 վարկածն ընդդեմ ℍ1

+ : θ > θ0 երկընտրան-

քայինի: 

Խնդրին համապատասխանող պարամետրական բազմություններն 

են՝ 
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Θ = {θ: θ > 0}, Θ0 = {θ: 0 < θ ≤ θ0}, Θ1 = {θ: θ > θ0}: 

Ակնհայտ է, որ 

𝑓θ̂(𝐗) = sup
θ∈Θ

𝑓θ(𝐗) = sup
θ∈Θ

[θ𝑛exp {− θ∑𝑋𝑖

𝑛

𝑖=1

}] = (𝐗̅)− 𝑛𝑒− 𝑛, 

որտեղ θ̂  = (𝐗̅)− 1-ը θ պարամետրի ՃՄ գնահատականն է: 

Մյուս կողմից՝ ունենք` 

sup
θ∈Θ0

𝑓θ(𝐗) = sup
0<θ≤θ0

[θ𝑛exp{− θ𝑛𝐗̅}] = {
(𝐗̅)− 𝑛𝑒− 𝑛,   եթե  (𝐗̅)− 1 ≤ θ0

θ0
𝑛𝑒−θ0𝑛𝐗̅ ,   եթե  (𝐗̅)− 1 > θ0

∶ 

Այստեղից  Λ̅   վիճականու համար կստանանք հետևյալ ներկայացումը՝  

Λ̅ =

sup
θ∈Θ0

𝑓θ(𝐗)

sup
θ∈Θ

𝑓θ(𝐗)
 =  {

1,եթե (𝐗̅)− 1 ≤ θ0                                   

(θ0 𝑒 𝐗
 ̅)𝑛𝑒−θ0𝑛𝐗

 ̅ ,    եթե  (𝐗̅)− 1 > θ0
: 

ℍ0
− վարկածը կհերքվի, եթե λ̅ ≤ 𝑐, որտեղ 𝑐-ն (0 < 𝑐 < 1) կրիտիկական 

եզրն է: Այսինքն՝ այն կհերքվի, եթե 

(𝐱̅)− 1 > θ0  և  (θ0𝐱̅)
𝑛 𝑒−θ0𝑛𝐱̅ + 𝑛 ≤ 𝑐: 

Նշանակենք` 𝑦 = θ0𝐱̅, և, նկատենք, որ 𝑔(𝑦) = 𝑦𝑛𝑒− 𝑛(𝑦 − 1) ֆունկցիան 

ընդունում է իր մեծագույն արժեքը 𝑦 = 1 դեպքում: Այսպիսով, 𝑦 < 1 և 

𝑦𝑛𝑒− 𝑛(𝑦 − 1) ≤ 𝑐 այն և միայն այն դեպքում, երբ 𝑦 ≤ 𝑘 (0 < 𝑘 < 1) : Այնպես 

որ 𝒳1𝛼 = {𝐱 : θ0𝐱
 ̅ ≤ 𝑘}, որտեղ 𝛼 նշանակալիության մակարդակի համար 

𝑘 թիվը գտնվում է 

 𝛼 = Pθ0(θ0𝐗̅ ≤ 𝑘) = Pθ0 (∑𝑋𝑖 ≤
𝑛𝑘

θ0

𝑛

𝑖=1

) =
1

Γ(𝑛)
 ∫ 𝑥𝑛−1𝑒− 𝑥𝑑𝑥 

𝑛𝑘

0

 

պայմանից, որտեղ ℍ0
− վարկածը  բավարարվելու դեպքում  ∑ 𝑋𝑖  

𝑛
𝑖=1  վիճա-

կանին ունի  ℾ(θ0, 𝑛) Էռլանգի  բաշխում (𝑛𝑘 արժեքը գտնվում է աղյուսակ 

Ա 10-ից): 

Նկատենք, որ 
 

Pθ(θ0𝑿̅ ≤ 𝑘) ≤ Pθ0(θ0𝐗̅ ≤ 𝑘) = 𝛼,   θ ≤ θ0:   
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Օրինակ 9.21: Միագործոն ցրվածքային վերլուծություն (𝑶𝒏𝒆 −

−𝒘𝒂𝒚 𝑨𝑵𝑶𝑽𝑨):  

 Դիցուք  𝐗𝑗
 = (𝑋𝑗1, … ,  𝑋𝑗𝑛𝑗) ~ ℕ(θj1,  θ2

2),   𝑗 = 1,… , 𝑘,   ∑𝑛𝑗

𝑘

𝑗=1

= 𝑛՝  

նորմալ  բաշխումների համախմբություններից վերցված միմյանցից ան-

կախ նմուշներ են: Կառուցենք 𝛼 նշանակալիության մակարդակով 

ℍ0 : θ11 = … = θk1 ∶= θ1
0  վարկածն ընդդեմ 

ℍ1 : ոչ բոլոր  θj1-երի միմյանց հավասար լինելու,  𝑗 = 1,… , 𝑘 

երկընտրանքայինի ստուգող համասեռության վերաբերյալ ՃՀ հայտա-

նիշը:  
 

        Այդ վարկածները ստուգման խնդրին համապատասխանող պարա-

մետրական բազմություններն են՝ 

Θ = ℛ𝑘 × (0,+∞) ⊂ ℛ𝑘+1 ,  Θ0 = ℛ × (0, +∞) ⊂ ℛ2: 

Սահմանենք հետևյալ նմուշային ցրվածքները՝ 
 

խմբային՝ 

 𝑆𝑗
2 =

1

𝑛𝑗
 ∑(𝑋𝑗𝑚 − 𝐗̅𝑗)

2
,

𝑛𝑗

𝑚=1

    𝐗̅𝑗 = 
1

𝑛𝑗
 ∑ 𝑋𝑗𝑚 ,

𝑛𝑗

𝑚=1

  𝑗 = 1,… , 𝑘,  

 

ներխմբային՝  

 𝑆2 =
1

𝑛
 ∑𝑛𝑗

𝑘

𝑗=1

𝑆𝑗
2 =

1

𝑛
 ∑∑(𝑋𝑗𝑚 − 𝐗̅𝑗)

2

𝑛𝑗

𝑚=1

𝑘

𝑗=1

,  

 

 
𝑆0
2
= 

1

𝑛 − 𝑘
 ∑∑(𝑋𝑗𝑚 − 𝐗̅𝑗)

2

𝑛𝑗

𝑚=1

𝑘

𝑗=1

, 

միջխմբային՝  

𝑆̂2 =
1

𝑘
 ∑𝑛𝑗

𝑘

𝑗=1

(𝐗̅𝑗 − 𝐗̅)
2
, 
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 𝑆̂0
2 =

1

𝑘 − 1
 ∑𝑛𝑗

𝑘

𝑗=1

(𝐗̅𝑗 − 𝐗̅)
2
,     𝐗̅ =

1

𝑛
 ∑∑ 𝑋𝑗𝑚 ,

𝑛𝑗

𝑚=1

𝑘

𝑗=1

 

ընդհանուր՝ 

 𝑆̃2 = 
1

𝑛
 ∑∑(𝑋𝑗𝑚 − 𝐗̅)

2

𝑛𝑗

𝑚=1

𝑘

𝑗=1

: 

𝐗𝑗
  նմուշի ճշմարտանմանության ֆունկցիան կլինի`  

𝑓𝛉(𝐗𝒋
 ) =  ∏ 𝑓𝛉(𝑋𝑗𝑚)

𝑛𝑗

𝑚=1

 = (2𝜋)− 𝑛𝑗 2⁄ (θ2
2)− 𝑛𝑗 2⁄ exp {− 

1

2θ2
2 
 ∑(𝑋𝑗𝑚 − θj1 )

2

𝑛𝑗

𝑚=1

}, 

իսկ ընդհանուր 𝐗 = (𝐗1
 , … , 𝐗𝑘

 ) նմուշի ճշմարտանմանության ֆունկ-

ցիան՝  

𝑓𝛉(𝐗) =∏𝑓𝛉(𝐗𝑗)

𝑘

𝑗=1

 = (2𝜋)− 𝑛 2⁄ (θ2
2)− 𝑛 2⁄ exp  {− 

1

2θ2
2 
 ∑ ∑(𝑋𝑗𝑚 − θj1 )

2

𝑛𝑗

𝑚=1

𝑘

𝑗=1

} ∶ 

Համաձայն խնդիր 5.65-ի (տե՛ս [15])՝ 𝛉 = (θ11, … , θk1, θ2) պարամետ-

րի ՃՄ գնահատականը  𝛉̂ = (𝐗̅1, … , 𝐗̅𝑘, 𝑆)  վիճականին է, այնպես որ 
 

𝑓𝛉̂(𝐗) = sup
𝛉∈Θ

 𝑓𝛉(𝐗) = (2𝜋)
− 𝑛 2⁄ (𝑆2)− 𝑛 2⁄ × 

× exp{− 
𝑛

2𝑆2 
 
1

𝑛
∑𝑛𝑗  

1

𝑛𝑗
∑(𝑋𝑗𝑚 − 𝐗̅𝑗)

2

𝑛𝑗

𝑚=1

𝑘

𝑗=1

} = (2𝜋𝑒𝑆2)− 𝑛 2⁄ : 

 

ℍ0 վարկածը բավարարվելու դեպքում տվյալները կարելի է դիտար-

կել որպես 𝑛 ծավալի  𝐗  նմուշ ℕ(θ1
0, θ2

2) համախմբությունից, հետևաբար` 

sup
𝛉∈Θ0

 𝑓𝛉(𝐗) = (2𝜋𝑒𝑆̃
2)
− 𝑛 2⁄

,  

և ՃՀ վիճականին կլինի հավասար 

 Λ̅ =

sup
θ∈Θ0

𝑓θ(𝐗)

sup
θ∈Θ

𝑓θ(𝐗)
= (

𝑆̃2

𝑆2
)

− 𝑛 2⁄  

:                                      (9.42) 
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Մյուս կողմից՝ ներկայացնելով 
 

𝑛𝑆̃2 =∑∑(𝑋𝑗𝑚 − 𝐗̅)
2

𝑛𝑗

𝑚=1

𝑘

𝑗=1

=∑∑(𝑋𝑗𝑚 − 𝐗̅𝑗)
2

𝑛𝑗

𝑚=1

𝑘

𝑗=1

+∑𝑛𝑗(𝐗̅𝑗 − 𝐗̅)
2
=

𝑘

𝑗=1

 

 

= 𝑛𝑆2 + (𝑘 − 1)𝑆̂0
2, 

կստանանք` 
 

Λ̅ = (
𝑆̃2

𝑆2
)

− 𝑛 2⁄  

= (1 + 
𝑘 − 1

𝑛 − 𝑘
 
𝑆̂0
2

𝑆0
2 
)

− 𝑛 2⁄

:                         (9.43) 

ՃՀ հայտանիշը հերքում է ℍ0 վարկածը, եթե λ̅ ≤ 𝑐 (λ̅ = 𝜆̅(𝐱 , Θ0) =

= Λ̅(𝐗(𝜔0), Θ0)), այսինքն՝ եթե 

 𝐹𝑛 = (
1

𝑘 − 1
 ∑𝑛𝑗(𝐗̅𝑗 − 𝐗̅)

2
𝑘

𝑗=1

) (
1

𝑛 − 𝑘
 ∑∑(𝑋𝑗𝑚 − 𝐗̅𝑗)

2

𝑛𝑗

𝑚=1

𝑘

𝑗=1

) =  
𝑆̂0
2

 𝑆0
2    (9.44)⁄  

վիճականու 𝑓𝑛 արժեքը որոշակի 𝑐 հաստատունի դեպքում բավարարում է 

𝑓𝑛 ≥ 𝑐 պայմանը, ապա 𝑐 թիվն ընտրվում է այնպես, որ ℍ0 վարկածը բա-

վարարվելու դեպքում P0(𝐹𝑛 ≥ 𝑐1) = 𝛼: 𝐹𝑛 վիճականին կոչվում է ցրվածք-

ների հարաբերություն կամ 𝑭 − վիճականի: Նկատենք, որ 𝑭 – վիճականու 

համարիչն ու հայտարարն անկախ պատահական մեծություններ են 

(տե՛ս [15]-ի թեորեմ 7.38-ը): Բացի այդ (տե՛ս Боровков ([2] Глава 1, § 4), ℍ0 

վարկածը բավարարվելու դեպքում` 

1

θ2
2  ∑𝑛𝑗(𝐗̅𝑗 − 𝐗̅)

2
𝑘

𝑗=1

 ~ ℍ2(𝑘 − 1): 

Այնուհետև ունենք` 

1

θ2
2  ∑ ∑(𝑋𝑗𝑚 − 𝐗̅𝑗)

2

𝑛𝑗

𝑚=1

𝑘

𝑗=1

 ~ ℍ2(𝑛 − 𝑘), 

 

քանի որ, ըստ Ֆիշերի թեորեմի (տե՛ս [15]-ի թեորեմ 7.38-ը),  
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𝜒𝑛𝑗−1
2 =

1

θ2
2 ∑(𝑋𝑗𝑚 − 𝐗̅𝑗)

2
 ~ ℍ2(𝑛𝑗 − 1),

𝑛𝑗

𝑚=1

 

որտեղից`  

∑𝜒𝑛𝑗−1
2  ~ 

𝑘

𝑗=1

ℍ2(∑(𝑛𝑗 − 1)

𝑘

𝑗=1

) = ℍ2(𝑛 − 𝑘): 

Այսպիսով, ℍ0վարկածի դեպքում 𝑭 – վիճականին ունի (𝑘 − 1) և (𝑛 − 𝑘) 

ազատության  աստիճաններով Ֆիշեր – Սնեդեկորի   𝑭­ բաշխում՝  𝐹𝑛  ~ 

 ∼ 𝕊(𝑘 − 1, 𝑛 − 𝑘): Հետևաբար, վերը նշված 𝑐1 հաստատունը կլինի հավա-

սար 𝑭 ­ բաշխման 𝛼 մակարդակով կրիտիկական եզրին՝  

𝑐1 = 𝑆𝛼(𝑘 − 1, 𝑛 − 𝑘), 

այսինքն՝ կրիտիկական տիրույթը 

𝒳1𝛼 = {𝐱 ∶  𝑓𝑛 ≥ 𝑆𝛼(𝑘 − 1, 𝑛 − 𝑘)}  

բազմությունն է,  𝑓𝑛 = 𝐹𝑛(𝜔0):  

Դիտողություն 9.6: Միագործոն ցրվածքային վերլուծությունը վերա-

բերում է այն դեպքերին, երբ կատարվում են տարբեր նմուշներին 

համապատասխանող որոշակի գործոնի դիտումներ: Օրինակ, կատար-

վում են հետազոտություններ՝ որոշելու համար մարդու արյան մեջ խո-

լեստերինի պարունակության մակարդակի կախվածությունը նրա աշ-

խատանքի բնույթից (գործոն): 

Դիտարկենք նախորդ օրինակի մասնավոր դեպքը, երբ  𝑘 = 2 -ի: 

Օրինակ 9.22: Դիցուք 𝐗1
  ~ ℕ(θ11, θ2

2) և 𝐗2
  ~ ℕ(θ21, θ2

2) միմյանցից 

անկախ, համապատասխանաբար 𝑛1 և 𝑛2 ծավալի նմուշներ են, և ստուգ-

վում է  ℍ0 : θ11 = θ21 ∶= θ1
0 համասեռության վարկածն ընդդեմ ℍ1 : θ11 ≠ 

≠ θ21  երկընտրանքայինի: 

Համաձայն (9.43)-ի՝ ՃՀ վիճականին ունի հետևյալ տեսքը՝  
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 Λ̅ = (1 + 
𝑛1(𝐗̅1 − 𝐗̅)

2 + 𝑛2(𝐗̅2 − 𝐗̅)
2

∑(𝑋1𝑗 − 𝐗̅1)
2
+ ∑(𝑋2𝑗 − 𝐗̅2)

2)

− 
𝑛1+ 𝑛2
2

,   𝐗̅  =  
𝑛1𝐗̅1 + 𝑛2𝐗̅2
𝑛1 + 𝑛2

∶     (9.45) 

Ձևափոխենք  Λ̅   արտահայտության կոտորակի համարիչը՝  

𝑛1(𝐗̅1 − 𝐗̅)
2 + 𝑛2(𝐗̅2 − 𝐗̅)

2 = 
 

=
𝑛1

(𝑛1 + 𝑛2)
2
(𝑛2𝐗̅1 − 𝑛2𝐗̅2)

2 +
𝑛2

(𝑛1 + 𝑛2)
2
(𝑛1𝐗̅2 − 𝑛1𝐗̅1)

2 = 

 

=
1

(𝑛1 + 𝑛2)
2
[𝑛1𝑛2

2(𝐗̅1 − 𝐗̅2)
2 + 𝑛2𝑛1

2(𝐗̅2 − 𝐗̅1)
2] =

𝑛1𝑛2
𝑛1 + 𝑛2

(𝐗̅1 − 𝐗̅2)
2:  

 

 

Նշանակենք՝ 

 𝑇 =
√
𝑛1𝑛2
𝑛1 + 𝑛2

 (𝐗̅1 − 𝐗̅2)

√
1

𝑛1 + 𝑛2 − 2
 [∑(𝑋1𝑗 − 𝐗̅1)

2
+ ∑(𝑋2𝑗 − 𝐗̅2)

2
]

∶             (9.46) 

Քանի որ  𝐗̅1~ ℕ(θ11, θ2
2 𝑛1⁄ ),  𝐗̅2 ~ ℕ(θ21, θ2

2 𝑛2⁄  ), ապա ℍ0 վարկածի դեպ-

քում ունենք՝ 

 𝐗̅1 − 𝐗̅2 ~ ℕ(0, θ2
2 (

1

𝑛1
+

1

𝑛2
)),  

 

այնպես որ՝  𝜉0 =
1

θ2
√
𝑛1𝑛2
𝑛1 + 𝑛2

 (𝐗̅1 − 𝐗̅2) ~ ℕ(0, 1): 

Մյուս կողմից, ըստ Ֆիշերի թեորեմի՝  

𝜒𝑛1−1
2 =

1

θ2
2  ∑(𝑋1𝑗 − 𝐗̅1)

2

𝑛1

𝑗=1

~ ℍ2(𝑛1 − 1),  

𝜒𝑛2−1
2 =

1

θ2
2  ∑(𝑋2𝑗 − 𝐗̅2)

2

𝑛2

𝑗=1

~ ℍ2(𝑛2 − 1):  

Հետևաբար, (9.46)-ի հայտարարում կստանանք` 
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θ2 √ 
1

𝑛1 + 𝑛2 − 2
 𝜒𝑛1+𝑛2−2
2  ,       𝜒𝑛1+𝑛2−2

2 = 𝜒𝑛1−1
2 + 𝜒𝑛2−1

2 ∶ 

Այսպիսով, (9.46)-ը կընդունի հետևյալ տեսքը՝ 

𝑇 =
𝜉0

√ 
1

𝑛1 + 𝑛2 − 2
 𝜒𝑛1+𝑛2−2
2

 , 

և քանի որ 𝜉0-ն անկախ է 𝜒𝑛1+𝑛2−2
2  պատահական մեծությունից ([15, 

թեորեմ 7.38]), ապա 𝑇 ~ 𝕋(𝑛1 + 𝑛2 − 2): 
 

       Այժմ (9.45)-ը ներկայացնենք հետևյալ ձևով՝ 
 

Λ̅ = (1 + 
𝑇2

𝑛1 + 𝑛2 − 2
)

− 
𝑛1+ 𝑛2
2

 

∶  

 

Հետևաբար՝ 𝛼 նշանակալիության մակարդակով ՃՀ հայտանիշի կրիտի-

կական տիրույթը կլինի` 

𝒳1𝛼 = {𝐱 ∶  λ̅ ≤ 𝑐} = {𝐱 ∶  |𝑡| ≥ 𝑡𝛼 2⁄ (𝑛1 + 𝑛2 − 2)},   λ̅
 = Λ̅ (𝜔0),   𝑡 = 𝑇(𝜔0), 

որը համընկնում է օրինակ 9.13-ում ստացված տիրույթի հետ:  

Օրինակ 9.23: Դիցուք 𝐗1
  ~ ℕ(θ11, θ12

2 ) և 𝐗2
  ~ ℕ(θ21, θ22

2 ) միմյանցից 

անկախ, համապատասխանաբար 𝑛1 և 𝑛2 ծավալի նմուշներ են, և ստուգ-

վում է ℍ0 : θ12
2  = θ22

2 ∶= θ02
2  վարկածն ընդդեմ ℍ1 : θ12

2  ≠ θ22
2  երկընտրան-

քայինի:  

Պարամետրական բազմություններն են՝ 

Θ = ℛ2 × ℛ+
2  ⊂ ℛ4,   Θ0 = ℛ × (0, +∞) ⊂ ℛ3: 

(𝐗1
 , 𝐗2

 ) միացյալ նմուշի ճշմարտանմանության ֆունկցիան կլինի ` 

𝑓𝛉(𝐗1
 , 𝐗2

 ) = (2𝜋)− 𝑛 2⁄ (θ12
2 ) −𝑛1 2⁄ (θ22

2 ) −𝑛2 2⁄
 
× 

 

× exp{−
1

2θ12
2  ∑(𝑋1𝑖 − θ11)

2  −
1

2θ22
2  ∑(𝑋2𝑖 − θ21)

2

𝑛2

𝑖=1

𝑛1

𝑖=1

} (𝑛 = 𝑛1 + 𝑛2): 



§ 9.6. Ճշմարտանմանության հարաբերության հայտանիշը և 

դրա որոշ կիրառությունները 

81 

Կարելի է ցույց տալ, որ 𝛉 = (θ11, θ21, θ12
2 , θ22

2 ) պարամետրի ՃՄ գնահա-

տականը  𝛉̂ = (𝐗̅1,  𝐗̅2,  𝑆1
2,  𝑆2

2)  վիճականին է: Այնպես որ՝ 

𝑓𝛉̂(𝐗1
 , 𝐗2

 ) = sup
𝛉∈Θ

𝑓𝛉(𝐗1
 , 𝐗2

 ) = (2𝜋𝑒)− 𝑛 2⁄ (𝑆1
2)− 𝑛1 2⁄ (𝑆2

2)− 𝑛2 2⁄ , 

sup
𝛉∈Θ0

 𝑓𝛉(𝐗1
 , 𝐗2

 ) = (2𝜋𝑒𝑆̃2)
− 𝑛 2⁄

,   𝑆̃2 = 
𝑛1𝑆1

2 + 𝑛2𝑆2
2

𝑛
∶  

Այստեղից՝ 

Λ̅ =

sup
𝛉∈Θ0

𝑓𝛉(𝐗1
 , 𝐗2

 )

sup
𝛉∈Θ

𝑓𝛉(𝐗1
 , 𝐗2

 )
=
(𝑆1
2) 𝑛1 2⁄ (𝑆2

2) 𝑛2 2⁄

(𝑆̃2)
 𝑛 2⁄

= 

 

= (
𝑛𝑆1

2

𝑛1𝑆1
2 + 𝑛2𝑆2

2)

𝑛1 2⁄

(
𝑛𝑆2

2

𝑛1𝑆1
2 + 𝑛2𝑆2

2)

 𝑛2 2⁄

= 

 

 

 =
(𝑛)𝑛 2⁄

(𝑛1)
𝑛1 2⁄ (𝑛2)

𝑛2 2⁄
∙

(𝑆1
2) 𝑛1 2⁄

(𝑆1
2 +

𝑛2
𝑛1
∙ 𝑆2
2)
𝑛1 2⁄

∙
(𝑆2
2) 𝑛2 2⁄

(
𝑛1
𝑛2
𝑆1
2 + 𝑆2

2)
𝑛2 2⁄

= 

 

=
(𝑛)𝑛 2⁄

(𝑛1)
𝑛1 2⁄ (𝑛2)

𝑛2 2⁄
 (
𝑛1 − 1

𝑛2 − 1
)
𝑛1 2⁄

(𝐹)𝑛1 2⁄ (1 + 
𝑛1 − 1

𝑛2 − 1
 𝐹)

− 𝑛 2⁄

,    (9.47) 

 

որտեղ 

 𝐹 =
𝑛1(𝑛2 − 1)𝑆1

2

𝑛2(𝑛1 − 1)𝑆2
2  ~ 𝕊(𝑛1 − 1,  𝑛2 − 1):  

(9.47) ներկայացումից դժվար չէ տեսնել, որ Λ̅ ≤ 𝑐 անհավասարությանը 

համարժեք է (𝐹 ≤ 𝑐1)  ∪  (𝐹 ≥ 𝑐2) պայմանը (𝑐1 < 𝑐2), և քանի որ 𝑭 – վի-

ճականին ունի (𝑛1 − 1) և ( 𝑛2 − 1) ազատության աստիճաններով Ֆիշեր – 

Սնեդեկորի (𝑭 −) բաշխում, ապա 𝛼 չափ ունեցող կրիտիկական տիրույթը 

կլինի` 

𝒳1𝛼 = {𝐱 ∶ 𝑓 ≤ 𝑆1−𝛼1(𝑛1 − 1, 𝑛2 − 1) ∪ 𝑓 ≥ 𝑆𝛼2(𝑛1 − 1, 𝑛2 − 1)}, 𝛼 = 𝛼1 + 𝛼2, 

որտեղ  𝑓-ը 𝑭 – վիճականու արժեքն է, երբ  𝐗1
 (𝜔0) = 𝐱1

 ,  𝐗2
 (𝜔0) = 𝐱2

 : 
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Ասիմպտոտիկ դեպք 

Ինչպես վերը նշվեց, հաճախ հնարավոր չի լինում գտնել Λ̅ վիճա-

կանու ճշգրիտ բաշխումը, սակայն որոշ պայմանների դեպքում գտնվում է 

𝑇𝑛 = − 2 ln Λ̅  վիճականու ասիմպտոտիկ բաշխումը (տե՛ս [4]):  

      Թեորեմ 9.6: Դիցուք  𝐗 ~ P𝛉 ∈ 𝒫, 𝛉 = (θ1,…, θk) ∈ Θ ⊂ ℛ𝑘: Ստուգվում  է  
 

ℍ0 : 𝛉 = 𝛉0 պարզ վարկածն ընդդեմ  ℍ1 : 𝛉 ≠ 𝛉0                  (9.48) 
 

երկկողմանի բարդ երկընտրանքայինի, որտեղ  𝛉0 = (θ01,…, θ0k) ∈ Θ տի-

րույթի որոշակի ներքին կետ է: Այդ դեպքում, եթե բաշխումների 𝒫 դասը 

բավարարում է (𝑹𝑹) – պայմանները (տե՛ս [15]-ի սահմանում 6.59-ը), և 

ճիշտ է  ℍ0 վարկածը, ապա 

     𝑇𝑛 = − 2 ln Λ̅(𝐗 , 𝛉0)  
𝑑
→ ℍ2(𝑘),   𝑛 → ∞, 

 

որտեղ   Λ̅(𝐗, 𝛉0) =
𝑓𝛉0(𝐗)

sup
𝛉∈Θ

𝑓𝛉(𝐗)
 (

𝑝𝛉0(𝐗)

sup
𝛉∈Θ

𝑝𝛉(𝐗)
):  

Թեորեմից բխում է, որ մեծ 𝑛-երի դեպքում 𝛼 նշանակալիության մա-

կարդակով ՃՀ հայտանիշը որոշվում է 

𝒳1𝛼(𝛉0) = {𝐱 ∶  −2 ln λ̅(𝐱, 𝛉0) ≥ 𝜒𝛼
2(𝑘)} 

ասիմպտոտիկ կրիտիկական տիրույթի միջոցով, որտեղ λ̅(𝐱, 𝛉0)-ն 

Λ̅(𝐗, 𝛉0) վիճականու արժեքն է, երբ  𝐗(𝜔0) = 𝐱
 : 

 

       Ա պ ա ց ու ց ու մ: (𝑹𝑹) - պայմանները բավարարվելու դեպքում, երբ 

տեղի ունի ℍ0 վարկածը, թեորեմ 6.61­ից (տե՛ս [15]) հետևում է 𝛉̂𝑛 ՃՄ-ի 

գնահատականի ունակությունը՝  

    𝛉̂𝑛 
Pθ0
→ 𝛉0,   𝑛 → ∞ :             (9.49)  

Վերլուծենք 𝐿θ(𝐗) = ln 𝑓θ(𝐗) լոգարիթմական ճշմարտանմանության 

ֆունկցիան 𝛉̂𝑛 = (θ̂𝑛1, … , θ̂𝑛𝑘) ՃՄ գնահատականի շրջակայքում Թեյլորի 

շարքի և դիտարկենք դրա արժեքը  𝛉 = 𝛉0 կետում՝ 
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𝐿𝛉0(𝐗) = 𝐿𝛉̂n(𝐗) + 
1

2
∑

𝜕2𝐿𝛉𝑛∗ (𝐗)

𝜕θ𝑖𝜕θ𝑗

𝑘

𝑖,𝑗=1

(θ̂𝑛𝑖 − θ0𝑖)(θ̂𝑛𝑗 − θ0𝑗), 

որտեղ            |𝛉𝑛
∗ − 𝛉0| < |𝛉̂𝑛 − 𝛉0|:           (9.50) 

Այստեղից՝ ℍ0 վարկածը բավարարվելու դեպքում կստանանք` 
 

− 2 ln Λ̅(𝐗, 𝛉0) = 2 [𝐿𝛉̂𝑛(𝐗) − 𝐿𝛉0(𝐗)] = 

= − 
1

𝑛
∑

𝜕2𝐿𝛉𝑛∗ (𝐗)

𝜕θ𝑖𝜕θ𝑗

𝑘

𝑖,𝑗=1

√𝑛 (θ̂𝑛𝑖 − θ0𝑖)(θ̂𝑛𝑗 − θ0𝑗)√𝑛 ∶               (9.51) 

 

Կիրառելով անընդհատության թեորեմը [տե՛ս [15]-ի թեորեմ Հ. 2.1-ը) 

և հաշվի առնելով 
𝜕2𝐿𝛉(𝐗)

𝜕θ𝑖𝜕θ𝑗
 ֆունկցիայի անընդհատությունը, 𝛉𝑛

∗  
Pθ0
→  𝛉0 

պայմանից, երբ  𝑛 → ∞ (տես`(9.49) և (9.50)), կհետևեն 

 
𝜕2𝐿𝛉𝑛∗ (𝐗)

𝜕θ𝑖𝜕θ𝑗
  
P𝛉0
→   

𝜕2𝐿𝛉0(𝐗)

𝜕θ𝑖𝜕θ𝑗
 ,   𝑖, 𝑗 = 1,… , 𝑘  

զուգամիտությունները: Այստեղից, համաձայն Խինչինի մեծ թվերի օրեն-

քի (տե՛ս [15]-ի թեորեմ 1.34-ը և դիտողություն 6.60-ը), կստանանք` 

 
1

𝑛
 
𝜕2𝐿𝛉0(𝐗)

𝜕θ𝑖𝜕θ𝑗
=
1

𝑛
 ∑

𝜕𝑈𝑖(𝑋𝑚, 𝛉0)

𝜕θ𝑗

𝑛

𝑚=1

  
Pθ0
→  E𝛉0 [

𝜕𝑈𝑖(𝑋1, 𝛉0)

𝜕θ𝑗
] = − 𝕀𝑖𝑗(𝛉0),    (9.52)  

 

𝐿𝛉𝟎(𝐗) = ∑ ln𝑓𝛉0(𝑋𝑚)

𝑛

𝑚=1

,   𝑈𝑖(𝑋𝑚, 𝛉0) =
𝜕

𝜕θ𝑖
[ln 𝑓𝛉0(𝑋𝑚)]:  

 

 

 Մյուս կողմից՝ (𝑹𝑹) - պայմաններից (տե՛ս [15]-ի թեորեմ 6.61-ը) բխում է 
 

√𝑛(𝛉̂𝑛 − 𝛉0) 
𝑑
→ 𝛈0 ~ ℕ𝑘(𝟎, [𝕀(𝛉0)]

−1 ),  𝑛 → ∞ 

զուգամիտությունը, որտեղ 

𝕀(𝛉0) = ‖𝕀𝑖𝑗
𝑛 (𝛉0)‖𝑖,𝑗=1

𝑘
= ‖E𝛉0 [

𝜕𝐿𝛉𝟎(𝐗)

𝜕θ𝑖
∙
𝜕𝐿𝛉𝟎(𝐗)

𝜕θ𝑗
]‖
𝑖,𝑗=1

𝑘
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Ֆիշերի տեղեկատվական (ինֆորմացիոն) մատրիցն է: Այսպիսով, (9.51)-

ից, (9.52)-ից և անընդհատության թեորեմից (տե՛ս [15]-ի թեորեմ Հ. 2.2-ը) 

կստանանք` 

− 2 ln Λ̅ (𝐗, 𝛉0) 
𝑑
→ 𝛈0𝕀(𝛉0)𝛈0

𝑇,      𝑛 → ∞, 

որտեղից, ըստ թեորեմ Հ. 34-ի, 𝛈0𝕀(𝛉0)𝛈0
𝑇 ~ ℍ2(𝑘), և թեորեմն ապացուց-

վեց:      

Դիտողություն 9.7: Թեորեմ 9.6-ի ապացույցից հետևում է, որ որպես 

(9.48) վարկածը ստուգող 𝛼 նշանակալիության մակարդակով կրիտիկա-

կան տիրույթ կարելի է դիտարկել նաև 
 

𝒳1𝛼
′ (𝛉0) = {𝐱 ∶  𝑇𝑛

′ = 𝛈𝑛 𝕀(𝛉0)
 𝛈𝑛
𝑇 ≥ 𝜒𝛼

2(𝑘)}   

կամ 

 

𝒳1𝛼
′′ (𝛉0) = {𝐱 ∶  𝑇𝑛

′′ = 𝛈𝑛 𝕀(𝜽̂𝑛)
 
𝛈𝑛
𝑇 ≥ 𝜒𝛼

2(𝑘)} 
 

բազմությունները, որտեղ 𝛉̂𝑛-ը 𝛉 ∈ ℛ𝑘պարամետրի ՃՄ գնահատականն է, 
  

 𝛈𝑛 = √𝑛(𝛉̂𝑛 − 𝛉0)
𝑑
→𝛈0 ~ ℕ𝑘(𝟎, [𝕀(𝛉0)]

−1), երբ   𝑛 → ∞: 
 
 

Ցույց տանք, որ ՃՀ հայտանիշն ունակ է և ասիմպտոտիկ անշեղ: 

Նշանակենք 𝜑0(𝐱) = 𝟙𝒳1𝛼(𝜃0)(𝐱)-ով ՃՀ հայտանիշի կրիտիկական ֆունկ-

ցիան:  

       Թեորեմ 9.7: (𝑹𝑹) -պայմանները բավարարվելու դեպքում ՃՀ հայտա-

նիշն ունակ է, այսինքն՝ բոլոր 𝛉 -ների (𝛉 ≠ 𝛉0) համար 
 

      𝑊𝜑0(𝛉) → 1,  𝑛 → ∞: 

Ա պ ա ց ու ց ու մ:  Դիցուք 𝐗 ~ Pθ ∈ 𝒫, որտեղ 𝒫 = {Pθ ∶  θ ∈ Θ ⊂ ℛ} 

(պարզության համար կդիտարկենք սկալյար θ պարամետրի դեպքը):  

Վերցնենք կամայական ֆիքսված θ1 ∈ Θ ներքին կետ, որտեղ θ1 ≠ θ0: 

Ներկայացնենք Λ̅(𝐗, θ0) վիճականին  
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Λ̅ (θ0) = Λ̅(𝐗, θ0) =
𝑓θ0(𝐗)

𝑓θ̂𝑛(𝐗)
=
𝑓θ1(𝐗)

𝑓θ̂𝑛(𝐗)
∙
𝑓θ0(𝐗)

𝑓θ1(𝐗)
= Λ̅ (θ1) Λ

− 1 

տեսքով, որտեղ 

 Λ =
𝑓θ1(𝐗)

𝑓θ0(𝐗)
 ,   Λ̅ (θ1) = Λ̅(𝐗, θ1):  

Այստեղից ունենք` 

   − 2 ln Λ̅ (θ0) = − 2 ln Λ̅ (θ1) + 𝑛V𝑛 ,           (9.53) 

որտեղ 

V𝑛 =
2

𝑛
 ln Λ =

2

𝑛
 [𝐿θ1(𝐗) − 𝐿θ0(𝐗)] = 2 [

1

𝑛
∑𝑙 (𝑋𝑖, θ1) −

1

𝑛
∑𝑙 (𝑋𝑖 , θ0)

𝑛

𝑖=1

𝑛

𝑖=1

] 

 

(𝑙 (𝑋𝑖, θ𝑘) ∶= ln 𝑓θ𝑘(𝑋𝑖) , 𝑘 = 0, 1): 

Դիտարկենք H (θ) = Eθ[𝑙 (𝑋1, θ)] ֆունկցիան: Համաձայն մեծ թվերի 

օրենքի` ℍ1: θ = θ1 վարկածը բավարարվելու դեպքում ճիշտ են 
 

1

𝑛
 ∑𝑙 (𝑋𝑖, θ1)

𝑛

𝑖=1

 
Pθ1
→  𝐻(θ1),    𝑛 → ∞  

 

զուգամիտությունները: Այնուհետև (տե՛ս (𝑹𝑹) ­պայմանները) ունենք  
 

𝑑𝑗𝐻(θ)

𝑑θ𝑗
= Eθ [

𝑑𝑗

𝑑θ𝑗
(𝑙 (𝑋1, θ))] ,    𝑗 = 1, 2, 

 

որտեղ (տե՛ս [15, դիտողություն 6.36]) 
 

𝑑𝐻(θ)

𝑑θ
|θ=θ1 = Eθ1[𝑙 

′(𝑋1, θ1)] = 0,   
𝑑2𝐻(θ)

𝑑θ2
|θ=θ1 = − 𝕀(θ1) < 0, 

 

այնպես որ θ = θ1 կետում H (θ) ֆունկցիան ընդունում է իր մեծագույն 

արժեքը, և 

V𝑛  
Pθ1
→  2 [𝐻(θ1) − 𝐻(θ0)] > 0,    𝑛 → ∞:  

Մյուս կողմից, ըստ թեորեմ 9.6 -ի, ունենք` 
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− 2 ln Λ̅ (θ1)  
𝑑
→ ℍ2(1), երբ  𝑛 → ∞: 

Այսպիսով, (9.53)-ից հետևում է, որ ℍ1 : θ = θ1 վարկածը բավարարվելու 

դեպքում − 2 ln Λ̅ (θ0) վիճականին, ըստ Pθ1 բաշխման, անսահման աճում 

է, երբ 𝑛 → ∞: Այնպես որ՝ 

𝑊𝜑0(θ1) = Pθ1(− 2 ln Λ̅
 (θ0) ≥ 𝜒𝛼

2(1)) → 1,   𝑛 → ∞, 

այսինքն՝ հայտանիշն ունակ է:       
 

Դիտողություն 9.8:   9.6 և 9.7 թեորեմներից ստանում ենք`  

𝑊𝜑0(θ) = Eθ[𝜑0(𝐗)] → Z(θ) = {
𝛼, երբ  θ = θ0
1, երբ  θ ≠ θ0

 ,    𝑛 → ∞, 

որտեղից, մասնավորապես, հետևում է ՃՀ հայտանիշի ասիմպտոտիկ 

անշեղությունը: 
  

Այժմ դիցուք ստուգվում է ℍ0 բարդ վարկածը՝ 

                                   ℍ0 : 𝛉 ∈ Θ0 ⊂ Θ (Θ ⊆ ℛ𝑘, dim Θ = 𝑘),           (9.54) 

   Θ0 = {𝛉 ∈ Θ ∶  θ = (𝛉0,  𝛉
′),   𝛉0 ∈ ℛ

𝑘−𝑟,   𝛉′ ∈ ℛ𝑟},  0 < 𝑟 < 𝑘,  dim Θ0 = 𝑟, 

 

որտեղ 𝛉𝟎-ն ֆիքսված է: Ճիշտ է թեորեմ 9.6-ի հետևյալ ընդհանրացումը 

(տե՛ս Кендалл, Стьюарт [6])՝ 

       Թեորեմ 9.8: Դիցուք  𝐗 ~ Pθ ∈ 𝒫, և ստուգվում է (9.54) բարդ վարկածն 

ընդդեմ  ℍ1: 𝛉 ∈ Θ1 = Θ ∖ Θ0 երկընտրանքայինի: Այդ դեպքում եթե 𝒫դասը 

բավարարում է (𝑹𝑹) – պայմանները, և ճիշտ է  ℍ0 վարկածը, ապա 

𝑇𝑛 = − 2 ln Λ̅  
𝑑
→  ℍ2(𝑘 − 𝑟),   𝑛 → ∞, 

որտեղ   Λ̅ = Λ̅(𝐗,Θ0) =

sup
𝛉∈Θ0

𝑓𝛉(𝐗)

sup
𝛉∈Θ

𝑓𝛉(𝐗)
 (

sup
𝛉∈Θ0

𝑝𝛉(𝐗)

sup
𝛉∈Θ

𝑝𝛉(𝐗)
): 

Թեորեմ 9.8-ում բերված 𝛼 մակարդակով ՃՀ հայտանիշը որոշվում է 

𝒳1𝛼 = {𝐱 ∶  −2 ln λ̅(𝐱, Θ0) ≥ 𝜒𝛼
2(𝑘 − 𝑟)}  

ասիմպտոտիկ կրիտիկական տիրույթով: 
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Օրինակ 9.24:  Դիցուք 𝐗 ~ ℕ(θ1, θ2
2): Ստուգենք ℍ0 : θ2 = θ20, θ1 ∈ ℛ 

բարդ վարկածն ընդդեմ ℍ1 : θ2 ≠ θ20, θ1 ∈ ℛ բարդ երկընտրանքայինի 

(θ1-ը «խանգարող» պարամետր է):  

Ունենք՝  Θ = ℛ × (0,+∞),  Θ0 = {𝛉 = (θ1, θ2) ∈ Θ ∶ θ1 ∈ ℛ, θ2 = θ20}, 

այնպես որ՝  

Λ̅ = Λ̅(𝐗, Θ0) =

sup
𝛉∈Θ0

𝑓𝛉(𝐗)

𝑓𝛉̂𝑛(𝐗)
= (

𝑆2

θ20
2 )

𝑛 2⁄

exp {− 
𝑛

2
(
𝑆2

θ20
2 − 1)}  ,   և 

 

− 2 ln Λ̅ = 𝑛 (
𝑆2

θ20
2 − 1) − 𝑛 ln [1 + (

𝑆2

θ20
2 − 1)] : 

 

Այժմ, հաշվի առնելով, որ ℍ0 վարկածի դեպքում  𝑆2
P
→ θ20

2 , երբ 𝑛 → ∞, 

և այնուհետև վերլուծելով  ln [1 + (
𝑆2

θ20
2 − 1)]  ըստ Թեյլորի շարքի, կստա-

նանք՝  −2 ln Λ̅ ≈  
𝑛

2
(
𝑆2

θ20
2 − 1)

2

: 

Կիրառելով, վերջապես, թեորեմ 9.8 -ը, որտեղ 𝑘 = 2, 𝑟 = 1, ՃՀ հայ-

տանիշի ասիմպտոտիկ կրիտիկական տիրույթը կլինի հավասար՝ 

 𝒳1𝛼 = {𝐱 ∶  
𝑛

2
(
𝑠2

θ20
2 − 1)

2

≥ 𝜒𝛼
2(1) }:           

Կրկին դիտարկենք միագործոն ցրվածքային վերլուծության մոդելը 

(տե՛ս օրինակ՝ 9.21-ը):  

Օրինակ 9.25: Դիցուք 𝐗𝑗
 = (𝑋𝑗1, … ,  𝑋𝑗𝑛𝑗) ~  ℕ(θj1,  θ2

2), 𝑗 = 1,… , 𝑘, 

 ∑ 𝑛𝑗
𝑘
𝑗=1 = 𝑛  նորմալ  բաշխումների համախմբություններից վերցված մի-

մյանցից անկախ նմուշներ են: Կառուցենք 𝜶 նշանակալիության մակար-

դակով 

ℍ0 : θ11 = … = θ𝑘1 ∶= θ1
0  վարկածն ընդդեմ 

ℍ1 : ոչ բոլոր  θj1-երը միմյանց հավասար են,  𝑗 = 1,… , 𝑘 

երկընտրանքայինի ստուգող համասեռության վերաբերյալ ասիմպտո-

տիկ ՃՀ հայտանիշը:  
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 Պարամետրական բազմություններն այստեղ հետևյալն են՝ 

Θ = ℛ𝑘 × (0,+∞) ⊂ ℛ𝑘+1 ,  Θ0 = ℛ × (0, +∞) ⊂ ℛ2, 

այնպես որ, համաձայն թեորեմ 9.8-ի, ℍ0 վարկածն ընդդեմ ℍ1 երկընտ-

րանքայինի ստուգող 𝛼 նշանակալիության մակարդակով ասիմպտոտիկ 

ՃՀ հայտանիշի կրիտիկական տիրույթը կունենա հետևյալ տեսքը (տե՛ս 

(9.42))՝ 

 𝒳1𝛼 = {𝐱 ∶  𝑛(ln(𝑠̃
2) − ln(𝑠2)) ≥ 𝜒𝛼

2(𝑘 − 1)} ∶  

Օրինակ 9.26 (բազմանդամային բաշխում): Կատարվում է 𝑛 անկախ 

փորձ, որտեղ յուրաքանչյուրում ի հայտ է գալիս լրիվ խումբ կազմող 

𝐴1, … ,  𝐴𝑟 պատահույթներից որևէ մեկը: Սահմանենք հետևյալ պատահա-

կան մեծությունը՝ 

𝜉(𝜔) =∑𝑖𝟙𝐴𝑖(𝜔)

𝑟

𝑖=1

 (𝜉(𝜔) = 𝑖,   եթե  𝜔 ∈ 𝐴𝑖): 

 

Դիտարկենք 𝐴𝑖 պատահույթների ի հայտ գալու  
 

 

 𝑝θ(𝑖) = Pθ(𝜉 = 𝑖) ∶= θ𝑖 =

=∏θ
𝑗

𝟙{𝑗}(𝑖) 

𝑟

𝑗=1

(𝛉 = (θ1, … , θ𝑟), 0 < θ𝑗 < 1,∑θ𝑗 = 1

𝑟

𝑗=1

 ) (9.55)  

 

(անհայտ) հավանականությունները, որտեղ 
 

 𝟙{𝑗}(𝑖) = 𝛿𝑖𝑗 = {
1,   եթե  𝑖 = 𝑗

 0,   եթե  𝑖 ≠ 𝑗
 

 (նկատենք,որ ∑θ𝑗 = 1 պայմանից բխում է,որ 

𝑟

𝑗=1

𝛉 ∈ ℛ𝑟−1):  

Դիցուք 𝐗 = (𝑋1, … , 𝑋𝑛)-ը 𝜉 պատահական մեծությանը համապատաս-

խանող նմուշն է: Նշանակենք 

𝜈𝑗
∗  =  ∑𝟙{𝑗}(𝑋𝑖)

𝑛

𝑖=1

­ով 

𝐗  նմուշում «j» արժեքի հաճախությունը: 
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Հայտնի է, որ 𝝂∗ = (𝜈1
∗, … , 𝜈𝑟

∗) պատահական վեկտորն ունի բազման-

դամային (պոլինոմական) բաշխում (𝝂∗ ~ 𝕄(𝑛; 𝛉))`  

Pθ(𝜈1
∗ = 𝑚1, … , 𝜈𝑟

∗ = 𝑚𝑟 ) =
𝑛!

𝑚1! …𝑚𝑟!
 ∏θ𝑖

𝑚𝑖  ,   ∑𝑚𝑖 = 𝑛,

𝑟

𝑖=1

  

𝑟

𝑖=1

𝑚𝑖 ∈ 𝒩 ∪ {0} , 

իսկ  𝜈յ
∗ ~ 𝔹in (θ𝑗 , 𝑛),  𝑗 = 1,… , 𝑟 ունեն բինոմական բաշխումներ:  

Դիտարկենք որպես նմուշ 𝝂∗ վեկտորը: ՃՀ հայտանիշի օգնությամբ 

ստուգենք 
 

 ℍ0 : 𝛉 = 𝛉
0 վարկածն ընդդեմ ℍ1: 𝛉 ≠ 𝛉0 երկընտրանքայինի, որտեղ 

 𝛉0 = (θ1
0, … , θ𝑟

0),   0 < θ𝑖
0 < 1,   𝑖 = 1,… , 𝑟,   ∑θ𝑖

0 = 1

𝑟

𝑖=1

 

պայմանները բավարարող հայտնի վեկտոր է: 

Հայտնի է (տե՛ս [15]-ի խնդիր 5.62-ը), որ 𝛉 = (θ1, … ,  θr) վեկտորի ՃՄ 

գնահատականը 𝛉̂ = (θ̂1, … ,  θ̂r) վիճականին է, որտեղ θ̂𝑗 = 𝜈𝑗
∗ 𝑛⁄ , 𝑗 = 1,

… , 𝑟, այնպես որ Λ̅ = Λ̅(𝐗, 𝛉0) ՃՀ վիճականու արժեքը, երբ 𝐗(𝜔0) = 𝐱, 

կլինի`  

λ̅ = λ̅(𝐱, 𝛉0) =
𝑝𝛉0(𝐱)

𝑝𝛉̂ (𝐱)
= (∏(θ𝑖

0)
𝑚𝑖

𝑟

𝑖=1

) ∏(
𝑚𝑖
𝑛
)
𝑚𝑖

𝑟

𝑖=1

⁄ =∏(
𝑛θ𝑖
0

𝑚𝑖
)

𝑚𝑖

,

𝑟

𝑖=1

 

 

որտեղ   𝑝𝛉0(𝐱) = P𝛉0(𝜈1
∗ = 𝑚1, … , 𝜈𝑟

∗ = 𝑚𝑟 ),  𝑝𝛉̂ (𝐱) = sup𝛉∈Θ 𝑝𝛉(𝐱):   

 

Այստեղից՝  

 −2 ln λ̅ = 2∑𝑚𝑖 ln
𝑚𝑖

𝑛θ𝑖
0

𝑟

𝑖=1

 :  

Համաձայն թեորեմ 9.6-ի՝ ՃՀ հայտանիշի 𝛼 չափ ունեցող ասիմպ-

տոտիկ կրիտիկական տիրույթը 

𝒳1𝛼 = {𝐱 ∶  𝑡𝑛 = 2∑𝑚𝑖 ln
𝑚𝑖

𝑛θ𝑖
0

𝑟

𝑖=1

≥ 𝜒𝛼
2(𝑟 − 1)} 
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բազմությունն է: Համաձայն դիտողություն 9.7-ի՝ այդ տիրույթին համար-

ժեք տիրույթն ունի հետևյալ տեսքը՝ 
 

𝒳1𝛼
′ = {𝐱 ∶  𝑇𝑛

′ = 𝛈𝑛𝕀(𝛉
0) 𝛈𝑛

𝑇 ≥ 𝜒𝛼
2(𝑟 − 1)} , 

որտեղ 𝛈𝑛 = √𝑛 (𝛉̂𝑛 − 𝛉
0), 𝛉̂𝑛-ը 𝛉 պարամետրի ՃՄ գնահատականն է, իսկ 

𝕀(𝛉0)-ն` 

𝕀(𝛉) = ‖𝕀𝑖𝑗(𝛉)‖𝑖,𝑗=1
𝑟

,   𝕀𝑖𝑗(𝛉) = − Eθ [
𝜕2 ln 𝑝θ(𝜉)

𝜕θ𝑖𝜕θ𝑗
]  

 

Ֆիշերի տեղեկատվական մատրիցի արժեքը  𝛉0 կետում: 

Գտնենք 𝕀(𝛉0) մատրիցը: Ներկայացնենք (9.55)-ը հետևյալ ձևով՝ 

 𝑝𝛉(𝑥) = P𝛉(𝜉 = 𝑥) ∶= θ𝑥 =∏θ
𝑗

𝟙{𝑗}(𝑥) (1 −∑θ𝑖

𝑟−1

𝑖=1

)

𝟙{𝑟}(𝑥)

,   𝑥 = 1,… , 𝑟 ,

𝑟−1

𝑗=1

 

որտեղից 

 ln 𝑝𝛉(𝑥) =∑𝟙{𝑗}(𝑥) ln θ𝑗 + 

𝑟−1

𝑗=1

𝟙{𝑟}(𝑥) ln(1 −∑θ𝑖

𝑟−1

𝑖=1

) ∶                (9.56)  

 

Այժմ, ածանցելով (9.56)-ում ստացված արտահայտությունը սկզբում 

ըստ θ𝑖-ի, այնուհետև ըստ θ𝑗-ի, կստանանք`  

𝜕 ln 𝑝𝛉(𝑥)

𝜕θ𝑖
= 𝟙{𝑖}(𝑥) 

1

θ𝑖
 − 𝟙{𝑟}(𝑥) 

1

θ𝑟
 ,  

 
𝜕2 ln 𝑝𝛉(𝑥)

𝜕θ𝑖𝜕θ𝑗
=

{
 
 

 
 − 𝟙{𝑖}(𝑥) 

1

θ𝑖
2  − 𝟙{𝑟}(𝑥) 

1

θ𝑟
2  ,   𝑖 = 𝑗 

− 𝟙{𝑟}(𝑥) 
1

θ𝑟
2  ,   𝑖 ≠ 𝑗 

 , 

որտեղից՝ 

𝕀𝑖𝑗(𝛉) = − E𝛉 [
𝜕2 ln 𝑝𝛉(𝜉)

𝜕θ𝑖𝜕θ𝑗
] = P𝛉(𝜉 = 𝑖) 

1

θ𝑖
2 + P𝛉(𝜉 = 𝑟) 

1

θ𝑟
2 =

1

θ𝑖
+ 
1

θ𝑟
 ,   𝑖 = 𝑗 ,  

 

 𝕀𝑖𝑗(𝛉) = P𝛉(𝜉 = 𝑟)
1

θ𝑟
2 =

1

θ𝑟
 ,   𝑖 ≠ 𝑗 ,  
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𝕀𝑖𝑗(𝛉
0) =

{
 
 

 
 
1

θ𝑖
0 + 

1

θ𝑟
0  ,   𝑖 = 𝑗 

1

θ𝑟
0  ,   𝑖 ≠ 𝑗 

∶ 

Այնուհետև, ի նկատի ունենալով, որ  θ̂𝑗 = 𝜈𝑗
∗ 𝑛⁄ ,  𝑗 = 1,… , 𝑟, կստանանք` 

 

 

𝑇𝑛
′ = 𝛈𝑛𝕀(𝛉

0) 𝛈𝑛
𝑇 = 

 

= 𝑛

[
 
 
 
 

∑(
1

θ𝑗
0 +

1

θ𝑟
0)

𝑟−1

𝑗=1

(
𝜈𝑗

𝑛
− θ𝑗

0)
2

+ ∑
1

θ𝑟
0 (
𝜈𝑖
𝑛
− θ𝑖

0) (
𝜈𝑗

𝑛
− θ𝑗

0)

𝑟−1

𝑖,𝑗=1
𝑖≠𝑗 ]

 
 
 
 

= 

 

 

 =  
1

θ𝑟
0  ∑

(𝜈𝑗 − 𝑛θ𝑗
0)
2

𝑛
 

𝑟−1

𝑗=1

+ 
1

θ𝑟
0 ∑

(𝜈𝑖 − 𝑛θ𝑖
0)(𝜈𝑗 − 𝑛θ𝑗

0)

𝑛

𝑟−1

𝑖,𝑗=1
𝑖≠𝑗

 +  ∑
(𝜈𝑗 − 𝑛θ𝑗

0)
2

𝑛θ𝑗
0  =

𝑟−1

𝑗=1

 

=
1

𝑛θ𝑟
0 [∑(𝜈𝑗 − 𝑛θ𝑗

0)

𝑟−1

𝑗=1

]

2

+ ∑
(𝜈𝑗 − 𝑛θ𝑗

0)
2

𝑛θ𝑗
0  = 

𝑟−1

𝑗=1

 

 

 

=
(𝜈𝑟 − 𝑛θ𝑟

0)2

𝑛θ𝑟
0  +  ∑

(𝜈𝑗 − 𝑛θ𝑗
0)
2

𝑛θ𝑗
0  ∶= 𝜒̂𝑛

2 ∶

𝑟−1

𝑗=1

 

 

Այսպիսով` 

 𝒳1𝛼
′ = {𝐱 ∶  𝜒̂𝑛

2 =∑
(𝜈𝑗 − 𝑛θ𝑗

0)
2

𝑛θ𝑗
0  

𝑟

𝑗=1

≥ 𝜒𝛼
2(𝑟 − 1)}  

 

տիրույթը 𝒳1𝛼 ասիմպտոտիկ կրիտիկական տիրույթին համարժեք է:  

   

Դիտողություն 9.9: 1. Նման ձևով, ինչպես օրինակ 9.26-ում, կարելի է 

ցույց տալ, որ մեծ 𝑛-ի դեպքում 𝒳1𝛼 տիրույթին համարժեք (տե՛ս դիտո-

ղություն 9.7-ը) 

𝒳1𝛼
′′ = {𝐱 ∶  𝑇𝑛

′′ = 𝛈𝑛𝕀(𝛉̂𝑛)
 
𝛈𝑛
𝑇 ≥ 𝜒𝛼

2(𝑟 − 1)} 

տիրույթը բերվում է  
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 𝒳1𝛼
′′ = {𝐱 ∶  𝑇𝑛

′′ = 𝜒̂𝑛
2 = ∑

(𝜈𝑗 − 𝑛θ𝑗
0)
2

𝜈𝑗
 

𝑟

𝑗=1

≥ 𝜒𝛼
2(𝑟 − 1)}  

 

տեսքի (տե՛ս խնդիր 9.18-ը): 

2. Օրինակ 9.26-ում ստացված 𝜒̂𝑛
2 վիճականին Կ.Պիրսոնի կողմից 

ներմուծած հայտնի 𝝌𝟐վիճականին է, որը հետագայում կսահմանվի՝ 

հիմնվելով այլ մոտեցումների վրա (տե՛ս § 10.1), և կապացուցվի, որ այն 

ունի (𝑟 –  1) ազատության աստիճաններով սահմանային 𝝌𝟐 բաշխում: 

Այստեղ Պիրսոնի թեորեմը, փաստորեն, ստացվեց որպես բազմանդա-

մային մոդելի համար կիրառված ՃՀ եղանակի հետևանք: 

Օրինակ 9.27:  𝐗 ~ 𝔹er (θ) Բեռնուլիի բաշխումից վերցված նմուշի մի-

ջոցով ստուգենք ℍ0 : θ = θ0 վարկածն ընդդեմ ℍ1 : θ ≠ θ0 երկընտրանքա-

յինի: 

ՃՀ վիճականին այս օրինակի համար կլինի` 

Λ̅ = Λ̅(𝐗, {θ0}) =
𝑝θ0(𝐗)

𝑝θ̂𝑛(𝐗)
=
θ0
𝑛𝐗̅(1 − θ0)

𝑛(1−𝐗̅)

(𝐗̅)𝑛𝐗̅(1 − 𝐗̅)𝑛(1−𝐗̅)
∶ 

Այստեղից՝  

− 2 ln 𝜆̅(𝐱) = − 2𝑛 [𝐱̅ ln
θ0
𝐱̅
 + (1 − 𝐱  ̅) ln

1 − θ0
1 − 𝐱̅

] ∶ 

Օգտելով օրինակ 9.26-ից՝ ՃՀ հայտանիշի  

𝒳1𝛼 = {𝐱 ∶  −2 ln 𝜆̅(𝐱) > 𝜒𝛼
2(1) }  

ասիմպտոտիկ կրիտիկական տիրույթը կարելի է փոխարինել համարժեք 

𝒳1𝛼
′ = {𝐱 ∶  𝜒̂𝑛

2 > 𝜒𝛼
2(1)} 

տիրույթով, քանի որ այս դեպքում՝ 

 𝜈∗  = ∑𝑋𝑖 ~ 𝔹in (θ, 𝑛) 

𝑛

𝑖=1

=  𝕄(𝑛;  θ, 1 − θ) ,   𝑟 = 2  և 

𝜒̂𝑛
2 =

(𝜈 − 𝑛θ0)
2

𝑛θ0
 +  
(𝑛 − 𝜈 − 𝑛(1 − θ0))

2

𝑛(1 − θ0)
=
(𝜈 − 𝑛θ0)

2

𝑛θ0(1 − θ0)
= 𝑛

(𝐱̅ − θ0)
2

θ0(1 − θ0)
∶ 
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       Օրինակ 9.28:  Դիցուք՝  

 𝐗𝒋
 = (𝑋𝑗1, … ,  𝑋𝑗𝑛𝑗) ~ 𝔹er (θ𝑗),   𝑗 = 1,… , 𝑘,   ∑𝑛𝑗 = 𝑛

𝑘

𝑗=1

  

Բերնուլիի բաշխումներ ունեցող միմյանցից անկախ նմուշներ են: 

Ստուգենք՝  

 ℍ0 : θ1 = … = θk  ∶= θ
0 վարկածն ընդդեմ 

 ℍ1 : ոչ բոլոր θ𝑗 -երը միմյանց հավասար են,  𝑗 = 1,… , 𝑘 

երկընտրանքային վարկածի, երբ 𝑛𝑗 → ∞: 

Այս խնդրին համապատասխանող պարամետրական բազմություն-

ներն են՝ 

Θ = {𝛉 = (θ1, … , θk):  0 < θ𝑗 < 1, 𝑗 = 1,… , 𝑘},  

Θ0 = {𝛉 ∈ Θ:  θ1 = …  = θk = θ
0}: 

 𝐗𝒋
 ,  𝑗 = 1,… , 𝑘  նմուշների ճշմարտանմանության ֆունկցիաներն են՝ 

 𝑝θ𝑗(𝐗𝑗
 ) =  ∏ 𝑝θ𝑗(𝑋𝑗𝑚)

𝑛𝑗

𝑚=1

= (θ𝑗)
𝑛𝑗 𝐗̅𝑗

(1 − θ𝑗)
𝑛𝑗 (1−𝐗̅𝑗) ,   𝐗̅𝑗 =

1

𝑛𝑗
 ∑ 𝑋𝑗𝑚 ∶

𝑛𝑗

𝑚=1

  

Քանի որ 𝐗𝑗
  նմուշները միմյանցից անկախ են (𝑗 = 1,… , 𝑘), ապա 𝐗 = 

= (𝐗1
 , … , 𝐗𝑘

 )   ընդհանուր   նմուշի   ճշմարտանմանության   ֆունկցիայի 

համար կստանանք`  

𝑝𝛉(𝐗
 ) =∏𝑝θ𝑗(𝐗𝑗

 ) =∏(θ𝑗)
𝑛𝑗 𝐗̅𝑗

(1 − θ𝑗)
𝑛𝑗 (1−𝐗̅𝑗)

,    𝛉 = (θ1, … , θ𝑘):

𝑘

𝑗=1

𝑘

𝑗=1

  

 

Այստեղից, հաշվի առնելով, որ  𝑿𝑗
  ~ 𝔹er (θ𝑗)  նմուշների համար  θ̂𝑗 = 𝐗̅𝑗, 

ունենք` 

sup
𝛉∈Θ

𝑝𝛉(𝐗
 ) =∏ sup

0<θ𝑗<1
𝑝θ𝑗(𝐗𝑗

 ) =∏(𝐗̅𝑗)
𝑛𝑗 𝐗̅𝑗

(1 − 𝐗̅𝑗)
𝑛𝑗 (1−𝐗̅𝑗):

𝑘

𝑗=1

𝑘

𝑗=1

 

 

Մյուս կողմից՝ 
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sup
𝛉∈Θ0

𝑝𝛉(𝐗) = sup
0<θ0<1

(θ0)𝑛𝐗̅(1 − θ0)𝑛(1−𝐗̅) =

= (𝐗̅)𝑛𝐗̅(1 − 𝐗̅)𝑛(1−𝐗̅)  ( 𝐗̅ =
1

𝑛
 ∑𝑛𝑗𝐗̅𝑗

𝑘

𝑗=1

) : 

Այսպիսով, ՃՀ վիճականին կլինի` 

Λ̅ =

sup
𝛉∈Θ0

𝑝𝛉(𝐗)

sup
𝛉∈Θ

𝑝𝛉(𝐗)
=∏(

𝐗̅

𝐗̅𝑗
)

𝑛𝑗𝐗̅𝑗

(
1 − 𝐗̅

1 − 𝐗̅𝑗
)

𝑛𝑗 (1−𝐗̅𝑗)

 ,

𝑘

𝑗=1

 

որտեղից ասիմպտոտիկ կրիտիկական տիրույթի համար կստանանք`  
 

𝒳1𝛼 = {𝐱 ∶ 2∑𝑛𝑗[𝐱̅𝑗(ln 𝐱̅𝑗 − ln 𝐱̅) + (1 − 𝐱̅𝑗)(ln(1 − 𝐱̅𝑗) − ln(1 − 𝐱̅))] ≥

𝑘

𝑗=1

≥ 𝜒𝛼
2(𝑘 − 1)}: 

      Խնդիրներ  
 

9.16. Դիցուք 𝐗 ~ ℿ(θ) (θ > 0) նմուշ է Պուասոնի բաշխումից: Ստուգել 

ℍ0 : θ = θ0 վարկածն ընդդեմ ℍ1 : θ ≠ θ0 երկընտրանքայինի: 
 

Ցուցում՝ օգտվել ([15]-ի օրինակ 7.31)-ից և դիտողություն 9.7-ից:  

Պատասխան՝ ասիմպտոտիկ կրիտիկական տիրույթներն են՝  

 𝒳1𝛼 = {𝐱
 ∶  2𝑛 [θ0 − 𝐱̅ − 𝐱̅ ln

θ0
𝐱̅
] > 𝜒𝛼

2(1) }   կամ 

𝒳1𝛼
′ = {𝐱: 

|𝐱̅ − θ0|

√θ0
 √𝑛 ≥ 𝑧𝛼 2⁄ }: 

 9.17. 𝐗𝑛~ 𝔼(θ1) և 𝐘𝑚 ~ 𝔼(θ2) (θ1 > 0, θ2 > 0 ) միմյանցից անկախ 

ցուցչային բաշխումների դասերից 𝑛 և 𝑚 ծավալի նմուշներ են: Կառուցել 

ℍ0 : θ1 = θ2 վարկածն ընդդեմ ℍ1 : θ1 ≠ θ2 երկընտրանքայինի ստուգող 

ասիմպտոտիկ ՃՀ հայտանիշը: 
 

Պատասխան՝ 

 𝒳1𝛼 = {(𝐱𝑛, 𝐲𝑚) ∶  2 [ln
𝑛𝑛 𝑚𝑚

(𝑛 +𝑚)𝑛+𝑚
− 𝑛 ln𝑇1 −𝑚 ln𝑇2 ]  ≥  𝜒𝛼

2(1)} , 
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որտեղ 

 𝑇1 =∑𝑋𝑖

𝑛

𝑖=1

[∑𝑋𝑖 + ∑𝑌𝑖

𝑚

𝑖=1

𝑛

𝑖=1

] ⁄ ,   𝑇2 =  ∑𝑌𝑖

𝑚

𝑖=1

[∑𝑋𝑖 +∑𝑌𝑖

𝑚

𝑖=1

𝑛

𝑖=1

] ∶⁄  

9.18. 𝝂∗ = (𝜈1
∗, … , 𝜈𝑟

∗) ~ 𝕄(𝑛: 𝛉 = (θ1, … , θr)) բազմանդամային բաշ-

խումից նմուշի միջոցով ստուգել ℍ0 : 𝛉 = 𝛉
0 վարկածն ընդդեմ ℍ1 : 𝛉 ≠ 𝛉

0 

երկընտրանքայինի, օգտվելով ՃՀ հայտանիշի կրիտիկական տիրույթին 

համարժեք 𝒳1𝛼
′′  տիրույթից (տե՛ս դիտողություն 9.7-ը): 

 

Ցուցում՝ տե՛ս օրինակ 9.26-ը: 

Պատասխան՝ 

 𝒳1𝛼
′′ = {𝐱 ∶  𝜒̂𝑛

2 =∑
(𝜈𝑗 − 𝑛θ𝑗

0)
2

𝜈𝑗
 

𝑟

𝑗=1

≥ 𝜒𝛼
2(𝑟 − 1)} ∶ 

9.19. Դիցուք 𝐗𝒋
  ~ ℕ(θ𝑗, σ𝑗

2), 𝑗 = 1,… , 𝑘 միմյանցից անկախ 𝑛𝑗 ծավալ 

ունեցող նորմալ բաշխումների դասերից նմուշներ են: Կառուցել                  

ℍ0: θ1 = ⋯ = θk = θ
0 համասեռության վարկածը ստուգող ասիմպտոտիկ 

ՃՀ հայտանիշը:  
 

Պատասխան՝ 

  𝒳1𝛼 = {𝐱 ∶  ∑
𝑛𝑗

𝜎𝑗
2  (𝑠0𝑗

2 − 𝑠𝑗
2) ≥ 𝜒𝛼

2(𝑘 − 1) 

𝑘

𝑗=1

} ,   𝑛 =∑𝑛𝑗

𝑘

𝑗=1

,   𝑠0𝑗
2 =

1

𝑛𝑗
∑(𝑥𝑗𝑚 − θ

0)
2

𝑛𝑗

𝑚=1

, 

𝑠𝑗
2 =

1

𝑛𝑗
∑(𝑥𝑗𝑚 − 𝐱̅𝑗)

2

𝑛𝑗

𝑚=1

,   𝒙𝑗 = 
1

𝑛𝑗
∑ 𝑥𝑗𝑚

𝑛𝑗

𝑚=1

,   𝐱𝑗
 = (𝑥𝑗1, … , 𝑥𝑗𝑛𝑗):  



ԳԼՈՒԽ 10. ՈՉ ՊԱՐԱՄԵՏՐԱԿԱՆ ՎԱՐԿԱԾՆԵՐ 

96 

 

 

 

Գլուխ 10  

Ոչ պարամետրական վարկածներ 

 

Ի տարբերություն պարամետրական վարկածների տեսության 

մոտեցման, որը ենթադրում էր, որ տեսական բաշխումը վերջավոր թվով 

պարամետրերի ճշտությամբ հայտնի է, ոչ պարամետրական վարկած-

ների տեսությունում տեսական բաշխման ֆունկցիոնալ տեսքը անհայտ է: 

 

       § 10.1.  Համաձայնության հայտանիշներ  

 

Դիցուք 𝐗 -ը P𝜉 բաշխում ունեցող 𝜉 պատահական մեծության 𝑛 ծա-

վալի նմուշ է, իսկ P0-ն՝ որոշակի թույլատրելի բաշխումների 𝒫 դասին 

պատկանող հայտնի բաշխում: Հաճախ պահանջվում է ստուգել 

 ℍ0 ∶  Pξ = P0                                                       (10.1) 

պարզ վարկածն ընդդեմ 

ℍ1 ∶  Pξ = P ≠ P0,  P ∈  𝒫                                          (10.2) 

բարդ երկընտրանքային վարկածի: Այլ կերպ ասած՝ պահանջվում է ստու-

գել՝ համաձայնեցվո՞ւմ են, արդյոք, 𝐗  նմուշի ընդունած արժեքները ℍ0 

վարկածի հետ, թե՞ ոչ: Այդ վարկածը ստուգող հայտանիշի կառուցումը 

հիմնված է P𝑛
∗ նմուշային բաշխման (տե՛ս [15, § 4.4]) և P0 բաշխման միջև 

որոշակի d(P𝑛 
∗ , P0) «հեռավորության» վրա: 

 Դիցուք տվյալ 𝛼 նշանակալիության մակարդակի համար գոյություն 

ունի այնպիսի 𝑐 = 𝑐𝛼 > 0 թիվ, որ 

 P0(d(P𝑛 
∗ , P0) > 𝑐𝛼) = 𝛼 :                                           (10.3) 

Հայտանիշի կրիտիկական ֆունկցիան կառուցվում է հետևյալ ձևով՝ 
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𝜑(𝐗) =  {
1, եթե  d(P𝑛 

∗ , P0) > 𝑐𝛼  

0, եթե  d(P𝑛 
∗ , P0) ≤ 𝑐𝛼  

 : 

Պարզ է, որ 𝛼 չափ ունեցող 𝜑 հայտանիշը տրվում է  

𝒳1𝛼 = {𝐱 ∶  d(P𝑛.
∗ , P0) > 𝑐𝛼} 

կրիտիկական տիրույթի միջոցով: 

Եթե (10.3) պայմանը փոխարինվի 

 lim
𝑛→∞

P0(d(P𝑛 
∗ , P0) > 𝑐𝛼) = 𝛼                                  (10.4) 

պայմանով, ապա հայտանիշը կունենա ասիմպտոտիկ 𝛼 չափ (տե՛ս § 9.2): 

(10.3) և (10.4) պայմանները բավարարող 𝜑 հայտանիշները կոչվում 

են համաձայնության հայտանիշներ: 

Դիտողություն 10.1: (10.3) պայմանը փաստորեն նշանակում է, որ ℍ0 

վարկածը բավարարվելու դեպքում d(P𝑛 
∗ ,  P0) վիճականու H բաշխումը 

կախված չէ («ազատ» է) P0 բաշխումից, այն ոչ պարամետրական է (տե՛ս § 

8.3), այսինքն` 

P0(d(P𝑛 
∗ , P0) > 𝑐𝛼) = H(𝑐𝛼 ,∞) = 𝛼, 

որտեղ 𝑐𝛼 թիվը H բաշխման 𝛼 մակարդակով կրիտիկական արժեքն է: 

(10.4) պայմանը նշանակում է, որ d(P𝑛 
∗ ,  P0) վիճականին ասիմպտո-

տիկ ոչ պարամետրական է, իսկ 𝑐𝛼-ն H բաշխման 𝛼 մակարդակով 

ասիմպտոտիկ կրիտիկական արժեքն է: 

Դիտողություն 10.2: Բացի (10.3) կամ (10.4) պայմաններից, որոնք 

տեղի ունեն, երբ բավարարվում է ℍ0 վարկածը, և ցույց են տալիս I սեռի 

սխալի հավանականությունը, համաձայնության հայտանիշներից պա-

հանջվում է նաև, որ ℍ1 վարկածի դեպքում բավարարվի 

d(P𝑛 
∗ , P0)

P
→∞,   𝑛 → ∞  (P ∈ 𝒫 \{P0}) 

պայմանը, ինչը նշանակում է, որ կամայական  𝜀 > 0 թվի համար 

 P(d(P𝑛 
∗ , P0) < 𝜀) → 0,   𝑛 → ∞ ∶                                   (10.5) 
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Դիտողություն 10.3: Վերցնելով (10.5) արտահայտությունում 𝜀 = 𝑐𝛼-

ի՝ կարելի է եզրակացնել, որ համաձայնության հայտանիշներն ունակ են, 

ուստի և՝ ասիմպտոտիկ անշեղ (տե՛ս  § 8.3): 

 Դիտարկենք համաձայնության հայտանիշների մի քանի կարևոր 

օրինակներ: 

 

       § 10.1.1. Պիրսոնի 𝝌𝟐 հայտանիշ 

 

Դիցուք 𝐗 -ը P𝜉 բաշխում ունեցող 𝜉 պատահական մեծության նմուշ է, 

իսկ P0 ∈ 𝒫-ն՝ որոշակի հայտնի բաշխում:   

Ստուգվում է (10.1) պարզ վարկածն ընդդեմ (10.2) բարդ 

երկընտրանքայինի: Հայտանիշը հիմնված է վիճակագրական տվյալների 

խմբավորման մեթոդի վրա:  

Ենթադրենք 𝜉 պատահական մեծության 𝒳 = 𝜉(Ω) արժեքների բազ-

մությունը (գլխավոր համախմբությունը) տրոհված է 𝑟 հատ ∆յ= [𝑧𝑗−1, 𝑧𝑗) 

միջակայքերի՝ 

𝒳 =⋃∆յ ,

𝑟

𝑗=1

  ∆𝑖 ∩ ∆𝑘= ∅,   𝑖 ≠  𝑘,  

որտեղ 

−∞ ≤ 𝑎 = 𝑧0 < 𝑧1 < ⋯ < 𝑧𝑟−1 < 𝑧𝑟 = 𝑏 ≤ +∞   (𝒳 = [𝑎, 𝑏]): 

Սովորաբար տրոհման 𝑧𝑖 կետերն ընտրում են այնպես, որ 

𝑝𝑖
0 ∶= P0(𝜉 ∈ ∆𝑖) = F0(𝑧𝑖) − F0(𝑧𝑖−1) =

1

𝑟
 ,   

որտեղ 

F0(𝑧𝑖) = P0(𝜉 < 𝑧𝑖),     ∑𝑝𝑖
0 = 1:

𝑟

𝑖=1

 

Նշանակենք՝ 

𝜈𝑗
∗ =∑𝟙∆𝑗(𝑋𝑖)

𝑛

𝑖=1

= 𝑛P𝑛 
∗ (∆յ) ,     𝑗 = 1,… , 𝑟,  
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∆յ  միջակայքերի նմուշային հաճախությունները: 

Դիտողություն 10.4: 𝜈𝑗
∗ հաճախությունները բացատրվում են 𝐗  նմու-

շով կամ փորձի արդյունքներով: Ի տարբերություն 𝜈𝑗
∗-ների, 𝑛𝑝𝑗

0 հաճա-

խությունները որոշվում են P0 բաշխման միջոցով՝ անկախ 𝐗  նմուշից: 
 

Դիտողություն 10.5: Նկատենք, որ ℍ0 ∶  𝐗
 ~ P0 վարկածի դեպքում 𝝂∗ =

(𝜈1
∗, … , 𝜈𝑟

∗) վեկտորն ունի բազմանդամային բաշխում` 𝝂∗~ 𝕄(𝑛; 𝑝1
0, … , 𝑝𝑟

0),   

 ∑𝜈𝑖 = 𝑛

𝑟

𝑖=1

,    𝜈𝑖 = 𝜈𝑖
∗(𝜔0): 

Այսպիսով, ℍ0 վարկածը կարելի է փոխարինել ℍ0
′  :  𝝂∗ ~ 𝕄(𝑛; 𝑝1

0, … , 𝑝𝑟
0)  

վարկածով, ուստի` ℍ0
′  վարկածը բավարարվելու դեպքում 𝜈𝑗

∗ հաճախու-

թյունները պետք է «մոտ» լինեն սպասվող  E(𝜈𝑗
∗) = 𝑛𝑝𝑗

0 (𝜈𝑗
∗ ~ 𝔹in (𝑝𝑗

0, 𝑛))  

հաճախություններին: 

Կ. Պիրսոնը առաջարկել է որպես P𝑛 
∗  և P0 բաշխումների միջև շեղման 

չափ («հեռավորություն») դիտարկել հետևյալ վիճականին (𝝌𝟐 վիճա-

կանի)՝ 

𝜒̂𝑛
2 =∑

(𝜈𝑖
∗ − 𝑛𝑝𝑖

0)
2

𝑛𝑝𝑖
0

𝑟

𝑖=1

=∑
(𝜈𝑖
∗)2

𝑛𝑝𝑖
0

𝑟

𝑖=1

 − 𝑛 ∶                        (10.6) 

 

Թեորեմ 10.1 (Կ. Պիրսոն ): ℍ0 (կամ  ℍ0
′ ) վարկածը բավարարվելու 

դեպքում տեղի ունի հետևյալ զուգամիտությունը՝ 

𝜒̂𝑛
2  
𝑑
→ ℍ2(𝑟 − 1),   𝑛 → ∞: 

Համաձայն Պիրսոնի թեորեմի՝ χ̂n
2 վիճականու սահմանային բաշ-

խումը անկախ է P0 բաշխումից:  

Թեորեմ 10.1-ից հետևում է նաև, որ տրված 𝛼  նշանակալիության 

մակարդակի համար տեղի ունի  
 

P0 ( 𝜒̂𝑛
2  ≥ 𝜒𝛼

2(𝑟 − 1) ) → P ( 𝜒𝑟−1
2 ≥ 𝜒𝛼

2(𝑟 − 1)) = 𝛼,    𝑛 → ∞ 



ԳԼՈՒԽ 10. ՈՉ ՊԱՐԱՄԵՏՐԱԿԱՆ ՎԱՐԿԱԾՆԵՐ 

100 

զուգամիտությունը, որտեղ  𝜒𝑟−1
2 ~ ℍ2(𝑟 − 1)-ը՝ (𝑟 − 1) ազատության աս-

տիճաններով 𝝌𝟐 բաշխում ունեցող պատահական մեծություն է, իսկ 

𝜒𝛼
2(𝑟 − 1)-ը` դրա 𝛼 մակարդակով կրիտիկական արժեքը: 

Կարելի է տեսնել (խնդիր 10.2), որ Պիրսոնի հայտանիշը  

𝜑(𝐱) =  {
1,   եթե  𝜒̂𝑛

2  > 𝜒𝛼
2(𝑟 − 1) 

0,   եթե  𝜒̂𝑛
2  ≤ 𝜒𝛼

2(𝑟 − 1) 
 

կրիտիկական ֆունկցիայով համաձայնության հայտանիշ է (բավարար-

վում են (10.4) և (10.5) պայմանները):  

Թեորեմ 10.1-ը ապացուցելու համար անհրաժեշտ է հետևյալ լեմման, 

որը բխում է բազմաչափ ԿՍԹ-ից (տե՛ս [15]-ի թեորեմ 1.39 -ը)։ 

       Լեմմա 10.1: Եթե 𝛎∗ = (𝜈1
∗, … , 𝜈𝑟

∗)  ~  𝕄(𝑛; 𝑝1
0, … , 𝑝𝑟

0) -ը բազման-

դամային բաշխում ունեցող վեկտոր է, ապա ճիշտ է հետևյալ զուգա-

միտությունը՝ 

𝛎∗ − 𝑛𝐩0

√𝑛
 
𝑑
→  ℕ𝑟(𝟎, ⅀),    𝑛 → ∞, 

 

𝐩0 = ( 𝑝1
0, … , 𝑝𝑟

0),  𝟎 ∈ ℛ𝑟,   ⅀ = ‖𝜎𝑖𝑗‖𝑖,𝑗=1
𝑟

, 
 

𝜎𝑖𝑗 = 𝛿𝑖𝑗𝑝𝑖
0 − 𝑝𝑖

0𝑝𝑗
0 = {

𝑝𝑖
0(1 − 𝑝𝑖

0), եթե  𝑖 = 𝑗 

 − 𝑝𝑖
0 𝑝𝑗

0,   եթե  𝑖 ≠ 𝑗 
,    𝛿𝑖𝑗  = {

1, եթե  𝑖 = 𝑗 
 0, եթե  𝑖 ≠ 𝑗 

  

Կրոնեկերի սիմվոլն է : 

Ա պ ա ց ու ց ու մ:   Ներկայացնենք՝ 𝛎∗ = ∑ 𝑋𝑖 
𝑛
𝑖=1 տեսքով, որտեղ  𝐗𝒊 = 

= (𝑋𝑖1, … , 𝑋𝑖𝑟),   𝑋𝑖𝑗 =

= {
1,   եթե  𝑖­րդ փորձում ի հայտ է եկել A𝑗 պատահույթը 

0,   հակառակ դեպքում                                                            
,   

այնպես որ  νk
∗ =∑𝑋𝑖𝑘 :

n

i=1

 

       Պարզ  է, որ  νk
∗  ~ 𝔹in (𝑝𝑘

0, 𝑛)  և  E(νk
∗) = 𝑛𝑝𝑘

0: Մյուս  կողմից, քանի  որ  

𝑋𝑖𝑗  ~ 𝔹er (𝑝𝑗
0), ապա` 

E(𝑋𝑖𝑗) = 𝑝𝑗
0,  cov(𝑋𝑖𝑘 , 𝑋𝑖𝑚) =  E(𝑋𝑖𝑘𝑋𝑖𝑚) −  E(𝑋𝑖𝑘) E(𝑋𝑖𝑚) =  𝛿𝑘𝑚𝑝𝑘

0 −  𝑝𝑘
0𝑝𝑚
0 : 
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        Այժմ լեմման բխում է բազմաչափ ԿՍԹ-ից:  

Թ ե ո ր ե մ ի  ա պ ա ց ու ց ու մ:  Ներկայացնենք`  

 𝜒̂𝑛
2 = ∑

(𝜈𝑘
∗ − 𝑛𝑝𝑘

0)
2

𝑛𝑝𝑘
0

𝑟

𝑘=1

=∑

[
 
 
 
𝜈𝑘
∗ − 𝑛𝑝𝑘

0

√𝑛𝑝𝑘
0

]
 
 
 
2

𝑟

𝑘=1

 

և նշանակենք  𝛈𝑛 = (𝜂1
𝑛, … , 𝜂𝑟

𝑛), որտեղ 

 𝜂𝑘
𝑛  = 

𝜈𝑘
∗ − 𝑛𝑝𝑘

0

√𝑛𝑝𝑘
0

=
𝜈𝑘 − 𝑛√𝑝𝑘

0

√𝑛
 ,   𝜈𝑘 =

1

√𝑝𝑘
0

 𝜈𝑘
∗ =

1

√𝑝𝑘
0

 ∑𝑋𝑖𝑘 ,   𝛎̃ = (𝜈1, … , 𝜈𝑟)

𝑛

𝑖=1

: 

 

Սահմանենք 

  𝐗̃𝑖 =

(

 
1

√𝑝1
0

 𝑋𝑖1 , … ,
1

√𝑝𝑟
0
 𝑋𝑖𝑟  

)

 ,   𝑖 = 1,… , 𝑛 

 

պատահական վեկտորներ այնպես, որ 

 𝛎̃ = ∑𝐗̃𝑖

𝑛

𝑖=1

  և  𝑋̃𝑖𝑗 =
1

√𝑝𝑗
0

 𝑋𝑖𝑗  ,   𝑗 = 1,… , 𝑟:  

Այստեղից կստանանք` 

E(𝑋̃𝑖𝑗) =
1

√𝑝𝑗
0

 E(𝑋𝑖𝑗) = √𝑝𝑗
0 ,   cov(𝑋̃𝑖𝑘 , 𝑋̃𝑖𝑚) =

1

√𝑝𝑘
0𝑝𝑚
0

 cov(𝑋𝑖𝑘 , 𝑋𝑖𝑚 ) = 

 =
1

√𝑝𝑘
0 ∙ 𝑝𝑚

0

 (𝛿𝑘𝑚𝑝𝑘
0 − 𝑝𝑘

0𝑝𝑚
0 ) = 𝛿𝑘𝑚 −√𝑝𝑘

0𝑝𝑚
0 ∶  

 

Համաձայն լեմմա 10.1-ի՝ ունենք` 

𝛈𝑛
𝑑
→ 𝛈̃ ~ ℕ𝑟(𝟎, ⅀̃),   𝑛 → ∞, 
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որտեղ 𝜎̃𝑖𝑗 = 𝛿𝑖𝑗 −√𝑝𝑖
0𝑝𝑗
0 , ⅀̃ = ‖𝜎̃𝑖𝑗‖𝑖,𝑗=1

𝑟
: Այնպես որ,  𝜼̃  վեկտորի բնութա-

գրիչ ֆունկցիան կլինի  

𝜑𝛈̃(𝐭) = E[𝑒
𝑖𝐭∙𝛈̃𝑇] = 𝑒− 

1

2
 𝐭 ⅀ ̃𝐭𝑇,  𝐭 ∈ ℛ𝑟: 

Մյուս կողմից, ունենք` 

 𝐭 ⅀̃ 𝐭𝑇  = ∑ 𝜎̃𝑖𝑗𝑡𝑖𝑡𝑗 =

𝑟

𝑖,𝑗=1

∑ 𝑡𝑖 (𝛿𝑖𝑗 −√𝑝𝑖
0𝑝𝑗
0)

𝑟

𝑖,𝑗=1

𝑡𝑗 =∑𝑡𝑖
2 − (∑𝑡𝑖 √𝑝𝑖

0

𝑟

𝑖=1

)

2

:

𝑟

𝑖=1

 

Այժմ սահմանենք օրթոգոնալ ℂ մատրից հետևյալ ձևով՝ 
 

ℂ =
‖

‖
√𝑝1

0 𝑐12  … 𝑐1𝑟
……………………
……………………

√𝑝𝑟
0 𝑐𝑟2  … 𝑐𝑟𝑟

‖

‖
∶ 

 

Դիտարկենք  𝐗0 = 𝛈̃ℂ  վեկտորը, որի բնութագրիչ ֆունկցիան է 
 

𝜑𝐗0(𝐮) = E [𝑒𝑖𝐮𝐗0
𝑇
] = E[𝑒𝑖𝐮ℂ

𝑇𝛈̃𝑇], 𝐮 ∈ ℛ𝑟: 

Կատարելով 𝐭 = 𝐮ℂ𝑇 (𝐮 = 𝐭ℂ) փոփոխականի փոխարինում՝ կստանանք` 
 

𝜑𝐗0(𝐮) = E[𝑒𝑖𝐭 𝛈̃
𝑇
] = 𝜑𝛈̃(𝐭) = 𝑒− 

1

2
 𝐭 ⅀ ̃𝐭𝑇: 

Նկատելով,որ  𝑢1 =∑𝑡𝑖 √𝑝𝑖
0

𝑟

𝑖=1

  և  ∑𝑡𝑖
2 =

𝑟

𝑖=1

 ∑𝑢𝑖
2

𝑟

𝑖=1

,   ունենք` 

 

                     𝐭 ⅀ ̃𝐭𝑇  = ∑𝑡𝑖
2 − (∑𝑡𝑖  √𝑝𝑖

0

𝑟

𝑖=1

)

2

=∑𝑢𝑖
2 − 𝑢1

2 =∑𝑢𝑖
2

𝑟

𝑖=2

𝑟

𝑖=1

,

𝑟

𝑖=1

 

այնպես որ՝ 

𝜑𝐗0(𝐮) = exp {− 
1

2
 ∑𝑢𝑖

2

𝑟

𝑖=2

 } ∶ 
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Այստեղից հետևում է, որ 𝑋1
0, 𝑋2

0, …, 𝑋𝑟
0 պատահական մեծություններն 

անկախ են, ընդ որում, var(𝑋1
0) = 0, իսկ 𝑋2

0, …, 𝑋𝑟
0 ~ ℕ(0,1) ստանդարտ 

նորմալ բաշխում ունեցող պատահական մեծություններ են: Իրոք՝ 

var(𝑋1
0) = var (∑√𝑝𝑖

0 𝜂̃𝑖

𝑟

𝑖=1

) = E(∑√𝑝𝑖
0 𝜂̃𝑖

𝑟

𝑖=1

)

2

= ∑ √𝑝𝑖
0𝑝𝑗
0

𝑟

𝑖,𝑗=1

 E(𝜂̃𝑖𝜂̃𝑗) = 

 

 = ∑ √𝑝𝑖
0𝑝𝑗
0

𝑟

𝑖,𝑗=1

(𝛿𝑖𝑗 −√𝑝𝑖
0𝑝𝑗
0) =∑𝑝𝑖

0 − ∑ 𝑝𝑖
0

𝑟

𝑖,𝑗=1

𝑟

𝑖=1

𝑝𝑗
0 = 

 

= 1 − (∑𝑝𝑖
0

𝑟

𝑖=1

)(∑𝑝𝑗
0

𝑟

𝑗=1

) = 0: 

Հետևաբար,  𝑋1
0 = 0  P - հ.հ., իսկ  𝑋2 ,

0 … ,𝑋𝑟
0 ~ ℕ(0,1) և անկախ են, այնպես 

որ՝ 

𝜒̂𝑛
2 = ∑[𝜂𝑘

𝑛]2  
𝑑
→ ∑[𝜂̃𝑘]

2 =∑[𝑋𝑘
0]
2

𝑟

𝑘=2

𝑟

𝑘=1

𝑟

𝑘=1

 ~ ℍ2(𝑟 − 1) 

(զուգամիտությունը բխում է  𝛈𝑛
𝑑
→ 𝛈̃ պայմանից և անընդհատության թեո-

րեմից):          

Օրինակ 10.1: Մետաղադրամը 4040 անգամ նետումից 2048 անգամ 

բացվել է «գերբը»: Համապատասխանո՞ւմ է, արդյոք, 0.05 նշանակալիու-

թյան մակարդակով այդ տվյալները մետաղադրամի «համաչափության» 

վերաբերյալ վարկածին:  

Նշանակենք 𝐴 -ով մետաղադրամի մեկ նետման դեպքում «գերբը» 

բացվելու պատահույթը: 𝜉 =  𝟙𝐴 պատահական մեծությունն ունի 𝑝 = P(𝐴) 

անհայտ պարամետրով Բերնուլիի բաշխում: Պահանջվում է 𝜉 պատահա-

կան մեծությանը համապատասխանող 𝐗 = (𝑋1, … , 𝑋𝑛) ~ 𝔹er (𝑝) նմուշի 

ընդունած 𝐱 = (𝑥1, … , 𝑥𝑛) արժեքի հիման վրա ( 𝜈1 = ∑ 𝑥𝑖 = 2048
𝑛
𝑖=1 ) ստու-

գել  ℍ0 :  𝑝 =  
1

2
  մետաղադրամի «համաչափության» վերաբերյալ վար-

կածն ընդդեմ  ℍ1:  𝑝 ≠
1

2
  երկընտրանքային վարկածի: 
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Այսպիսով, ունենք` 

 𝒳 = {0,1},   𝑟 = 2,   𝑛 = 4040,  𝜈1
∗  = ∑𝑋𝑖 

𝑛

𝑖=1

~ 𝔹in (𝑝, 𝑛),   𝜈1 = 2048,  

 

 𝜈2 =  1992 ,   𝑝1
0 = 𝑝2

0 =
1

2
∶ 

Պիրսոնի  𝝌𝟐 վիճականին կընդունի հետևյալ արժեքը՝ 

𝜒̂𝑛
2 = 

(𝜈1 − 𝑛𝑝1
0)2

𝑛𝑝1
0  +  

(𝜈2 − 𝑛𝑝2
0)2

𝑛𝑝2
0  ≈ 0.776 ∶ 

0.05 նշանակալիության մակարդակի համար 𝜒0.05
2 (1) = 3.843 (տե՛ս աղ-

յուսակ Ա 3­ը): Այսպիսով՝ 

0.776 = 𝜒̂𝑛
2  <  𝜒0.05

2 (1) = 3.843 

պայմանից հետևում է, որ փորձի արդյունքները 0.05 մակարդակով չեն 

հակասում մետաղադրամի «համաչափության» վերաբերյալ վարկածին:  

 

       § 10.1.2.  𝝌𝟐 հայտանիշ: Բարդ վարկածի ստուգում 

 

Դիցուք պահանջվում է ստուգել վարկած, որ 𝜉 պատահական մեծու-

թյան P  բաշխումը պատկանում է որոշակի 𝒫0 ⊂ 𝒫 բաշխումների դասին: 

Ենթադրենք 𝒫 դասը պարամետրական է, 𝛉 ∈ Θ  և 𝒫0 = {P𝛉 ∶ 𝛉 ∈ Θ0 ⊂ ℛ
𝑘 ,

𝑘 ≥ 1},  Θ0 ⊂ Θ: 

Այսպիսով, 𝜉 պատահական մեծության 𝐗 նմուշի միջոցով պետք է 

ստուգել 

ℍ0 : 𝐗 
  ~ P𝛉 ∈ 𝒫0  վարկածն ընդդեմ  ℍ1 : 𝐗  ~ P𝛉 ∉ 𝒫0          (10.7) 

երկընտրանքայինի: 

Ենթադրենք 𝜉 պատահական մեծության 𝒳 = 𝜉(Ω) = [𝑎, 𝑏] ⊆ ℛ ար-

ժեքների բազմությունը տրոհված է 𝑟 հատ ∆յ= [𝑧𝑗−1, 𝑧𝑗) միջակայքերի՝ 

 𝒳 =⋃∆𝑗

𝑟

𝑗=1

,   ∆𝑖 ∩ ∆𝑘= ∅,   𝑖, 𝑘 = 1,… , 𝑟: 

Նշանակենք` 
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𝜈𝑗
∗ =∑𝟙∆𝑗(𝑋𝑖)

𝑛

𝑖=1

= 𝑛P𝑛 
∗ (∆յ) − ով,   𝑗 = 1,… , 𝑟, 

∆յ միջակայքերի նմուշային հաճախությունները, 𝛎∗ = (𝜈1
∗, … , 𝜈𝑟

∗)-ով` հա-

ճախությունների վեկտորը: 

𝜉 պատահական մեծության ∆𝑗 միջակայքերում գտնվելու հավանա-

կանություններն են՝ 

𝑝𝑗(𝛉) = P𝛉(𝜉 ∈ ∆𝑗) = F𝛉(𝑧𝑗) − F𝛉(𝑧𝑗−1),  F𝛉(𝑥) = P𝛉(𝜉 < 𝑥), 

այնպես որ, 𝝌𝟐 վիճականին կլինի կախված անհայտ 𝛉 = (θ1, … , θk) պա-

րամետրից՝ 

 𝜒̂𝑛
2(𝛉) =∑

(𝜈𝑗
∗ − 𝑛𝑝𝑗(𝛉))

2

𝑛𝑝𝑗(𝛉)

𝑟

𝑗=1

=∑
(𝜈𝑗
∗)
2

𝑛𝑝𝑗(𝛉)

𝑟

𝑗=1

 − 𝑛 ∶                  (10.8) 

 

Որպեսզի այն կիրառվի (10.7) վարկածները ստուգելու համար, 

անհրաժեշտ է գնահատել 𝛉 պարամետրը: 

Դիտարկենք  

𝛎∗ = (𝜈1
∗, … , 𝜈𝑟

∗)  ~  𝕄(𝑛; 𝑝1(𝛉),… ,  𝑝𝑟(𝛉)) 
 

վեկտորի ճշմարտանմանության ֆունկցիան՝ 

 𝑝𝛉(𝛎) = P𝛉(𝛎
∗ = 𝝂) = P𝛉(𝜈1

∗ = 𝜈1, … , 𝜈𝑟
∗ = 𝜈𝑟 ) =  

𝑛!

𝜈1!… 𝜈𝑟!
∏[𝑝𝑗(𝛉)]

𝜈𝑗

𝑟

𝑗=1

, 

∑𝜈𝑗 = 𝑛

𝑟

𝑗=1

,   𝛎 = (𝜈1
 , … , 𝜈𝑟

 ): 

Բազմանդամային ճշմարտանմանության հավասարումների համա-

կարգ կոչվում է հետևյալ համակարգը` 

 
𝜕

𝜕θ𝑚
𝐿𝛉(𝛎) = 0,   𝑚 = 1,   … ,   𝑘,                              (10.9) 

որտեղ 

 𝐿𝛉(𝛎) ∶= ln p𝛉(𝛎) = ln
𝑛!

𝜈1!… 𝜈𝑟!
+∑𝜈𝑗 ln 𝑝𝑗(𝛉)

𝑟

𝑗=1

− ն 
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բազմանդամային լոգարիթմական ճշմարտանմանության ֆունկցիան է, 

ուստի (10.9) համակարգը կընդունի 

 
𝜕

𝜕θ𝑚
𝐿𝛉(𝛎) =∑

𝜈𝑗

𝑝𝑗(𝛉)
∙
𝜕𝑝𝑗(𝛉)

𝜕θ𝑚

𝑟

𝑗=1

= 0,   𝑚 = 1,   … ,   𝑘             (10.10) 

տեսքը:  

Θ0 ⊂ ℛ
𝑘 բազմությունից արժեքներ ընդունող այն 𝛉̃ = (θ̃1, … , θ̃k) 

վիճականին, որի դեպքում 𝑝𝛉(𝛎) (կամ 𝐿𝛉(𝛎)) ֆունկցիան ընդունում է իր 

մեծագույն արժեքը, և որը բավարարում է (10.10) պայմանները, կոչվում է 

բազմանդամային ճշմարտանմանության մաքսիմումի գնահատական: 
 

Տեղադրելով այդ գնահատականը 𝑝𝑗(𝛉) ֆունկցիաներում  𝛉 պարա-

մետրի փոխարեն և նշանակելով 𝑝̃𝑗 = 𝑝𝑗(𝛉̃)՝ (10.8) վիճականին կընդունի 

հետևյալ տեսքը՝ 

 𝜒̂𝑛
2(𝛉̃) =∑

(𝜈𝑗
∗ − 𝑛𝑝̃𝑗)

2

𝑛𝑝̃𝑗

𝑟

𝑗=1

=∑
(𝜈𝑗
∗)
2

𝑛𝑝̃𝑗

𝑟

𝑗=1

 − 𝑛 ∶                    (10.11) 

       Թեորեմ 10.2 (Ֆիշեր (տե՛ս Крамер [8])): Դիցուք 𝑝𝑗(𝛉), 𝑗 = 1,… , 𝑟 

ֆունկցիաները բոլոր 𝛉 ∈ Θ0 ⊂ ℛ
𝑘-ների համար (𝑘 < 𝑟 − 1) բավարարում 

են հետևյալ պայմանները՝ 

1.  𝑝𝑗(𝛉) ≥ 𝑐 > 0,   𝑝𝑗(𝛉) ∈ 𝐶
(2)(Θ0),   2.  rank ‖

𝜕𝑝𝑗(𝛉)

𝜕θ𝑖
‖
𝑖,𝑗=1

𝑘,𝑟

= 𝑘,  

և ճիշտ է ℍ0 վարկածը: Այդ դեպքում տեղի ունի  

𝜒̂𝑛
2(𝛉̃)

𝑑
→ℍ2(𝑟 − 𝑘 − 1),   𝑛 → ∞  

զուգամիտությունը, որտեղ  𝛉̃-ը 𝛉-ի բազմանդամային ՃՄ գնահատականն է: 
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Ըստ թեորեմ 10.2-ի՝ 𝜒̂𝑛
2(𝛉̃) վիճականու սահմանային բաշխումն ան-

կախ է P𝛉 բաշխումից (վիճականին ասիմպտոտիկ ոչ պարամետրական է), 

այնպես որ տրված 𝛼 նշանակալիության մակարդակի համար ճիշտ է  

P𝛉( 𝜒̂𝑛
2(𝛉̃) ≥ 𝜒𝛼

2(𝑟 − 𝑘 − 1)) → P (𝜒𝑟−𝑘−1
2 ≥ 𝜒𝛼

2(𝑟 − 𝑘 − 1)) = 𝛼,   𝑛 → ∞ 

զուգամիտությունը: Այսպիսով, 𝝌𝟐 հայտանիշի 𝛼 նշանակալիության մա-

կարդակով ասիմպտոտիկ կրիտիկական տիրույթը կունենա հետևյալ 

տեսքը՝ 

𝒳1𝛼 = {𝐱 ∶  𝜒̂𝑛
2(𝛉̃) ≥ 𝜒𝛼

2(𝑟 − 𝑘 − 1)}: 

Օրինակ 10.2: Երկու երեխա ունեցող 2020 ընտանիքներում կա-

տարված հետազոտությունը պարզել է, որ դրանցից 527-ն ունեն 2 տղա, 

476-ը՝ 2 աղջիկ, իսկ մնացած 1017 ընտանիքներում կան տարբեր սեռի 

երեխաներ: Կարելի՞ է, արդյոք, 0.05 մակարդակով համարել, որ երկու 

երեխա ունեցող ընտանիքներում տղաների թիվը բաշխված է բինոմական 

օրենքով: 

Պահանջվում է ստուգել ℍ0: 𝜉 ~ 𝔹in (θ, 2) վարկած, որ երկու երեխա 

ունեցող ընտանիքներում տղաների 𝜉 թիվն ունի բինոմական բաշխում: 

Այսինքն՝  

Pθ (𝜉 = 𝑥) = 𝐶2 
𝑥θ𝑥 (1 − θ)2−𝑥 ,   𝑥 = 0, 1, 2, 

որտեղ θ = P(𝐴)-ն տղա երեխա (𝐴 պատահույթ) ունենալու հավանակա-

նությունն է: Նշանակենք՝ 

𝑝0(θ) = Pθ(𝜉 = 0) = (1 − θ)2,   𝑝1(θ) = Pθ(𝜉 = 1) = 2θ(1 − θ), 
 

𝑝2(θ) = Pθ(𝜉 = 2) = θ
2: 

Գտնենք θ պարամետրի համար θ̃ բազմանդամային ՃՄ գնահատա-

կանը:  

Բազմանդամային ճշմարտանմանության հավասարումը կլինի` 
 

𝐿θ
′ (𝛎) =∑

𝜈𝑗

𝑝𝑗(θ)
 𝑝𝑗
′(θ) = 0,

2

𝑗=0
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որտեղ` 

          𝜈0 = 476,  𝜈1 = 1017, 𝜈2 = 527,  𝑝0
′ (θ) = −2(1 − θ), 𝑝1

′ (θ) = 2 − 4θ,   

𝑝2
′ (θ) = 2θ: 

Այսպիսով՝ 

− 
2𝜈0
1 − θ

 + 
1 − 2θ

θ(1 − θ)
 𝜈1  +  

2𝜈2
θ
= 0, 

որտեղից կստանանք`  

θ̃ =
1

2𝑛
(𝜈1 + 2𝜈2) ≈ 0.513, 

 

 

𝑝̃0 = 𝑝0(θ̃) = (1 − θ̃)
2
≈ 0.237,   𝑝̃1 = 𝑝1(θ̃) = 2θ ̃(1 − θ̃) ≈ 0.5, 

 

 

𝑝̃2 = 𝑝2(θ̃) = θ̃
2 ≈ 0.263: 

 

Այժմ հաշվենք 𝝌𝟐 վիճականու արժեքը՝ 

𝜒𝑛
2(θ̃) =∑

(𝜈𝑗 − 𝑛𝑝̃𝑗)
2

𝑛𝑝̃𝑗

2

𝑗=0

=
7.5

478.74
 + 

49

1010
 + 

18.15

531.26
≈ 0.098 , 

որտեղ` 
 

 

𝑛 = 2020, 𝑟 = 3, 𝑛𝑝̃0 = 478.74,  𝑛𝑝̃1 = 1010,  𝑛𝑝̃2 = 531.3,  𝑟 − 𝑘 − 1 = 1, 
 

  𝜒𝛼
2(𝑟 − 𝑘 − 1) = 𝜒0.05

2 (1) = 3.843: 
 

Այսպիսով`  
 

0.098 = 𝜒𝑛
2(𝜃̃) < 𝜒0.05

2 (1) = 3.843, 
 

այնպես որ ℍ0 վարկածը չի հերքվում, տվյալները համաձայնեցվում են 

այն վարկածի հետ, որ տղաների թիվը երկու երեխա ունեցող ընտա-

նիքներում չի հակասում բինոմական օրենքին:  
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       Խնդիրներ 

 

10.1. Ապացուցել Պիրսոնի թեորեմը 𝑟 = 2 դեպքի համար: 
 

 

 Ցուցում՝ օգտվել Մուավր – Լապլասի ինտեգրալային սահմանային 

թեորեմից: 
 

10.2. Ապացուցել, որ ℍ0
′  : 𝛎∗ ~ 𝕄(𝑛, 𝑝1

0, … , 𝑝𝑟
0) վարկածը ստուգող 

Պիրսոնի հայտանիշը համաձայնության հայտանիշ է: 
 

 

 Ցուցում՝ օգտվել այն փաստից, որ ℍ1
′  : 𝛎∗ ≁  𝕄(𝑛, 𝑝1

0, … , 𝑝𝑟
0) մրցող վարկածի 

դեպքում գոյություն ունի 𝑘 ≤ 𝑟 թիվ այնպիսին, որ 𝑝𝑘 ≠ 𝑝𝑘
0 և 

 

(𝜈𝑘
∗ − 𝑛𝑝𝑘)

2

𝑛𝑝𝑘
=
𝑛

𝑝𝑘
(
𝜈𝑘
∗

𝑛
− 𝑝𝑘)

2
P
→  ∞  ,   𝑛 → ∞: 

 

 

𝟏𝟎. 𝟑.  Օգտվելով հավասար երկարությամբ ∆𝑗= [(𝑗 − 1)ℎ, 𝑗ℎ), 

𝑗 = 1, … , 𝑟 − 1, ∆𝑟= [(𝑟 − 1) ℎ, ∞) միջակայքերի խմբավորման մեթոդից 

(ℎ -ը և 𝑟 -ը տրված են)՝ կառուցել ℍ0 : 𝐗 ~ 𝔼(θ) վարկածը (θ -ն անհայտ է) 

ստուգող Պիրսոնի  𝝌𝟐 համաձայնության հայտանիշը:  
 

 

Ցուցում՝ նախ գտնել θ պարամետրի բազմանդամային ՃՄ գնահատականը՝  
 
 

 𝜃̂𝑛 = − 
1

ℎ
 ln 𝑧̂𝑛 ,  𝑧̂𝑛 = (∑𝑗𝜈𝑗 − 𝑛

𝑟

𝑗=1

) (∑𝑗𝜈𝑗 − 𝜈𝑟

𝑟

𝑗=1

): ⁄  

 

Պատասխան՝  ℍ0 վարկածը հերքվում է,  

𝜒̂𝑛
2 = ∑

𝜈𝑗
2 

𝑛𝑝𝑗
 𝑟

𝑗=1 − 𝑛 ≥ 𝜒𝛼
2(𝑟 − 2), որտեղ   𝑝̂𝑗 = 𝑧̂𝑛

𝑗−1(1 − 𝑧̂𝑛 ),   𝑗 = 1,… , 𝑟 − 1, 𝑝̂𝑟 = 

= 𝑧̂𝑛
𝑟−1 : 

 

 

10.4. 8002 անկախ փորձեր կատարելիս լրիվ խումբ կազմող 𝐴, 𝐵 և 𝐶  

պատահույթները ի հայտ են եկել, համապատասխանաբար, 2014, 5008 և 

980 անգամ: Ճի՞շտ է, արդյոք, 0.05 նշանակալիության մակարդակով հե-

տևյալ վարկածը՝  
 

ℍ0 : P(𝐴) = 0.5 − 2θ,   P(𝐵) = 0.5 + θ,   P(𝐶) = θ (0 < θ < 0.25): 
 

 

Ցուցում՝ գտնել θ պարամետրի բազմանդամային ՃՄ գնահատականը: 
 

Պատասխան՝ վարկածը չի հերքվում, համաձայնությունը լավն է (P ­ արժեքը 

(P-V) ≈ 0.65): 
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       § 10.1.3. Կոլմոգորովի հայտանիշ 

 

 ℍ0:  𝐗 ~ P = P0  վարկածն ընդդեմ  ℍ1:  𝐗
 ~ P ≠ P0 

երկընտրանքայինի ստուգող համաձայնության մեկ այլ հայտանիշ է 

Կոլմոգորովի հայտանիշը: Ենթադրվում է, որ P0 բաշխմանը համապա-

տասխանող F0(𝑥) բաշխման ֆունկցիան անընդհատ է:  

       Որպես հայտանիշի վիճականի դիտարկվում է Կոլմոգորովի վիճա-

կանին՝ 

𝐷𝑛 = 𝐷 (𝐗) =  sup
𝑥∈ℛ

 |F𝑛
∗ (𝑥) − F0(𝑥)|: 

Համաձայն Գլիվենկոյի թեորեմի (տե՛ս [15]-ի թեորեմ 4.32-ը)՝ ℍ0 վար-

կածը բավարարվելու դեպքում  𝐷𝑛 → 0  P ­հ.հ., երբ  𝑛 → ∞: 

Որպես նմուշային P𝑛
∗ և տեսական  P0 բաշխումների միջև հեռավո-

րություն դիտարկվում է  

𝑑𝐾(P𝑛
∗, P0) ∶= √𝑛 𝐷𝑛 = √𝑛 sup

𝑥∈ℛ
 |F𝑛
∗ (𝑥) − F0(𝑥)|  

վիճականին: 

        Թեորեմ 10.3 (Կոլմոգորով): Դիցուք ճիշտ է ℍ0 վարկածը: Այդ 

դեպքում տեղի ունի ըստ բաշխման հետևյալ զուգամիտությունը՝ 

√𝑛 𝐷𝑛
𝑑
→ 𝕂 ,  𝑛 → ∞,  

որտեղ 𝕂-ն Կոլմոգորովի բաշխումն է : 

 Կոլմոգորովի բաշխում ունեցող 𝜉 պատահական մեծության բաշխ-

ման ֆունկցիան ունի հետևյալ տեսքը` 

 K(𝑥) = P(𝜉 < 𝑥) = ( ∑ (−1)𝑘
+∞

𝑘=−∞

𝑒−2𝑘
2𝑥2)𝟙[0,∞)(𝑥),   𝑥 ∈ ℛ: 

K(𝑥) ֆունկցիայի համար կազմված են աղյուսակներ (տե՛ս աղյուսակ 

Ա 11): Գործնականում արդեն 𝑛 ≥ 20-ի դեպքում P(√𝑛 𝐷𝑛 < 𝑥) հավանա-

կանությունները, անկախ F0(𝑥) բաշխման ֆունկցիայից, բավականաչափ 
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«լավ» մոտարկվում են K(𝑥) ֆունկցիայով` 𝑑𝐾 վիճականին ասիմպտոտիկ 

ոչ պարամետրական է: 
 

Թեորեմ 10.3 -ից բխում է, որ  ℍ0 վարկածը բավարարվելու դեպքում 

տրված 𝛼 նշանակալիության մակարդակի համար ճիշտ է  

 P0(√𝑛 𝐷𝑛 ≥ 𝜆𝛼) → P(𝜉 ≥ 𝜆𝛼) = 1 − K(𝜆𝛼) = 𝛼, 𝑛 → ∞  

զուգամիտությունը, որտեղ 𝜆𝛼-ն Կոլմոգորովի բաշխման 𝛼 մակարդակով 

ասիմպտոտիկ կրիտիկական արժեքն է (եզրը): Այսպիսով, Կոլմոգորովի 

հայտանիշի 𝛼 նշանակալիության մակարդակով ասիմպտոտիկ կրիտի-

կական տիրույթը  

𝒳1𝛼 = {𝐱 ∶  √𝑛 𝐷(𝐱) ≥ 𝜆𝛼},   երբ  𝑛 ≥ 20  

բազմությունն է: Հեշտ է տեսնել (խնդիր 10.5), որ Կոլմոգորովի հայտա-

նիշը 
 

𝜑(𝐱) =  {
1,   եթե  √𝑛 𝐷(𝐱) ≥ 𝜆𝛼  

0,   եթե  √𝑛 𝐷(𝐱) < 𝜆𝛼  
 

 

կրիտիկական ֆունկցիայով համաձայնության հայտանիշ է: 
 

 Դիտողություն 10.7: Գործնականում 𝐷(𝐱)-ի արժեքը հաշվարկվում է  

 

𝐷 (𝐱) =  sup
𝑥∈ℛ

 |F𝑛(𝑥) − F0(𝑥)| = 

max = max
1≤𝑘≤𝑛

{|F𝑛(𝑥(𝑘)) − F0(𝑥(𝑘))|, |F𝑛(𝑥(𝑘+1)) − F0(𝑥(𝑘))|}  (10.12) 

բանաձևի օգնությամբ, որտեղ  F𝑛(𝑥(𝑘)) =
𝑘−1

𝑛
 : 

Պարզվում է, որ 𝐷 (𝐗) վիճականին ոչ միայն ասիմպտոտիկ ոչ պա-

րամետրական է (թեորեմ 10.3), այլև նույնիսկ ոչ պարամետրական: 

        Թեորեմ 10.4 (Կոլմոգորով ): Եթե ճիշտ է ℍ0 ∶  𝐗 ~ P0 վարկածը, և 

F0(𝑥) բաշխման ֆունկցիան անընդհատ է, ապա 𝐷𝑛 վիճականու 

բաշխումը ցանկացած  𝑛 ≥ 1-ի համար կախված չէ  P0  բաշխումից : 
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Ա պ ա ց ու ց ու մ: Ենթադրենք՝ F0(𝑎) = 0, F0(𝑏) = 1 և 0 < F0(𝑥) < 1 

բոլոր 𝑥 ∈  (𝑎, 𝑏)-ից, −∞ ≤ 𝑎 < 𝑏 ≤ +∞, այսինքն՝ (𝑎, 𝑏) միջակայքը  P0 

բաշխման կրիչն է (𝑁 P0 = (𝑎, 𝑏)):  Նշանակենք`  𝐵 = {𝑥 ∈ (𝑎, 𝑏):   F0(𝑥) <

  < F0(𝑥 + 𝜀) բոլոր բավականաչափ փոքր 𝜀 > 0 թվերի համար}-ով F0(𝑥) 

ֆունկցիայի «աճի» կետերը: Հեշտ է տեսնել, որ կամայական 𝑦 ∈ (0,1)-ից 

թվի համար գոյություն ունի միակ 𝑥 ∈ 𝐵 -ից կետ այնպիսին, որ F0(𝑥) = 𝑦, 

այսինքն՝ F0(𝑥) բաշխման ֆունկցիան 𝐵 բազմության վրա հակադարձելի 

է: Նշանակենք՝ 𝑥 = F0
−1(𝑦): 

Դիտարկենք  𝐗 = (𝑋1, … , 𝑋𝑛) ~  P0 նմուշի համար 𝑈𝑖 = F0(𝑋𝑖), 𝑖 = 1,

… , 𝑛 պատահական մեծությունները, որոնք անկախ են, քանի որ անկախ 

են  𝑋1 , … , 𝑋𝑛 պատահական մեծությունները:  

Մյուս կողմից, 𝑈𝑖  պատահական մեծությունները բաշխված են հավա-

սարաչափ օրենքով [0,1] միջակայքում` 𝑈𝑖  ~ 𝕌(0,1): Իրոք՝ 

F𝑈𝑖(𝑦) = P0(𝑈𝑖 < 𝑦) = P0 (𝑋𝑖 < F0
−1(𝑦)) = F0 (F0

−1(𝑦)) = 𝑦 

բոլոր  𝑦 ∈ (0,1) համար: Այժմ ներկայացնենք  𝐷𝑛 վիճականին  

 𝐷𝑛 = sup
𝑥∈ℛ

 |F𝑛
∗ (𝑥) − F0(𝑥)| = sup

𝑥∈ 𝐵
 |F𝑛
∗ (𝑥) − F0(𝑥)| =  

= sup
0<y<1

 |F𝑛
∗ (F0

−1(𝑦)) − 𝑦|                                                      (10.13) 

տեսքով, որտեղ  𝑦 = F0(𝑥) և 𝑥 = F0
−1(𝑦) ∈ 𝐵: Մյուս կողմից, քանի որ 

F𝑛
∗ (F0

−1(𝑦)) =
1

𝑛
 ∑𝟙

(−∞, F0
−1(𝑦))

(𝑋𝑖) = 

𝑛

𝑖=1

1

𝑛
 ∑𝟙(−∞,𝑦)( 𝑈𝑖) = F̃𝑛

∗ (𝑦),

𝑛

𝑖=1

 

որտեղ F̃𝑛
∗ (𝑦)-ը 𝐔 = (𝑈1, … , 𝑈𝑛) նմուշի բաշխման ֆունկցիան է, ապա 

(10.13)-ից կստանանք`  
 

𝐷𝑛 = sup
0<y<1

|F̃𝑛
∗ (𝑦) − 𝑦|, 

 

այսինքն՝ 𝐷𝑛 վիճականու բաշխումը կախված չէ F0(𝑥) բաշխման 

ֆունկցիայից:          
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Դիտողություն 10.8: Ի նկատի ունենալով 𝐷𝑛 վիճականու ոչ պարա-

մետրական լինելու հատկությունը՝ կազմված է այդ պատահական մեծու-

թյան բաշխման ֆունկցիայի աղյուսակը (տե՛ս աղյուսակ Ա 12-ը), որտեղ 

որպես P0 բաշխում է դիտարկվել [0,1] միջակայքում հավասարաչափ 

բաշխումը: 

Նշանակենք 𝐷𝑛 վիճականու կրիտիկական արժեքը 𝑑𝛼(𝑛)-ով, 

այսինքն՝ 

P(𝐷𝑛 ≥ 𝑑𝛼(𝑛)) = 𝛼: 

𝑛 ≥ 20-ի դեպքում 𝜆𝛼 կրիտիկական արժեքը գործնականորեն քիչ է 

տարբերվում √𝑛 𝑑𝛼(𝑛) մեծությունից: 

Որոշակի 𝛼 նշանակալիության մակարդակների համար 𝜆𝛼 կրի-

տիկական արժեքներն են՝ 
 

𝜆0.2 = 1.08,  𝜆0.1 = 1.23, 𝜆0.05 = 1.36,  𝜆0.02 = 1.52,  𝜆0.01 = 1.63:  (10.14) 

Օրինակ 10.3: 𝛼 = 0.2 մակարդակի և նմուշի 𝑛 = 20 ծավալի դեպքում 

ունենք √20 𝑑0.2(20) ≈ 1.036, այն ժամանակ, երբ 𝜆0.2 = 1.08: (10.14)-ում 

բերված մնացած 𝛼 մակարդակների համար կատարված հաշվարկները 

ցույց են տալիս, որ |∆𝛼| =| √𝑛 𝑑𝛼(𝑛) − 𝜆𝛼| բացարձակ սխալներն ունեն մո-

տավորապես 0.005 կարգ:  

Օգտվելով Կոլմոգորովի 10.3 և 10.4 թեորեմներից՝ ստանանք 𝐗  նմու-

շին համապատասխանող անընդհատ F(𝑥) բաշխման ֆունկցիայի 

ճշգրիտ և ասիմպտոտիկ վստահության միջակայքերը:  

Թեորեմ 10.3-ից հետևում է, որ բոլոր 𝑥 ∈ ℛ-երի համար ճիշտ է 

P (F𝑛
∗ (𝑥) − 

𝜆𝛼

√𝑛
< F(𝑥) < F𝑛

∗ (𝑥) + 
𝜆𝛼

√𝑛
) → 1 − 𝛼,    𝑛 → ∞  

զուգամիտությունը: Այսինքն՝ (1 − 𝛼) մակարդակով ասիմպտոտիկ 

վստահության միջակայքը F(𝑥) ֆունկցիայի համար (F𝑛
∗ (𝑥) ∓ 

𝜆𝛼

√𝑛
, ∀𝑥 ∈ ℛ) 

միջակայքն է: 

Նմանապես, թեորեմ 10.4 -ից բոլոր  𝑥 ∈ ℛ -ից` կստանանք` 
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P(F𝑛
∗ (𝑥) − 𝑑𝛼(𝑛) < F(𝑥) < F𝑛

∗ (𝑥) + 𝑑𝛼(𝑛)) = 1 − 𝛼 ,    𝑛 ≥ 1,  

ուստի (1 − 𝛼) մակարդակով վստահության միջակայքը F(𝑥) ֆունկցիայի 

համար  (F𝑛
∗ (𝑥) ∓ 𝑑𝛼(𝑛), ∀𝑥 ∈ ℛ)  միջակայքն է: 

Այստեղից, օգտվելով վարկածների ստուգման վստահության միջա-

կայքերի եղանակից, ℍ0 վարկածը կստուգվի հետևյալ կերպ`  
 

𝛼 նշանակալիության մակարդակով  ℍ0 վարկածը չի հերքվի, եթե 

բոլոր 𝑘-երի (𝑘 = 1 , … , 𝑛 − 1) համար`  
 

 

ասիմպտոտիկ դեպքում ՝ 
 

 F𝑛(𝑥(𝑘+1)) −
𝜆𝛼

√𝑛
 < F0(𝑥(𝑘)) < F𝑛(𝑥(𝑘)) +

𝜆𝛼

√𝑛
 ,                (10.15) 

 

 𝒏 < 𝟐𝟎 դեպքում ՝  

 F𝑛(𝑥(𝑘+1)) − 𝑑𝛼(𝑛) < F0(𝑥(𝑘)) < F𝑛(𝑥(𝑘)) + 𝑑𝛼(𝑛) ,            (10.16) 

և, համապատասխանաբար, այն կհերքվի, եթե գոնե մեկ 𝑘-ի համար այս 

անհավասարությունները խախտվեն:  

Օրինակ 10.4: Աղյուսակ Ա 7-ից վերցված են n = 10 ծավալ ունեցող 

նորմալ «պատահական թվեր» (տե՛ս աղյուսակի Ա 7-ի վերջին սյունը)՝ 

− 0.261,     − 0.357,      1.827,        0.535,     − 2.056, 

− 0.392,   − 2.832,    − 0.362,   − 1.040,      0.089: 
 

0.1 նշանակալիության մակարդակով Կոլմոգորովի հայտանիշի 

օգնությամբ ստուգենք վարկած, որ այդ թվերը ℕ(0,1)ստանդարտ նորմալ 

բաշխված պատահական մեծության արժեքներ են: 
  

Վերադասավորենք աճման կարգով այդ թվերը (կազմենք վարիա-

ցիոն շարքը) և լրացնենք հետևյալ աղյուսակը՝ 
 

𝑘 𝑥(𝑘)  
𝑘

𝑛
− 𝑑𝛼(𝑛) 

F0(𝑥(𝑘)) 𝑘 − 1

𝑛
+ 𝑑𝛼(𝑛) 

1 −2.832 −0.2687 0.0023 0.3687 

2 −2.056 −0.1687 0.02 0.4687 
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3 −1.040 −0.0687 0.1492 0.5687 

4 −0.392 0.0313 0.3483 0.6687 

5 −0.357 0.1313 0.3605 0.7687 

6 −0.261 0.2313 0.3974 0.8687 

7 0.089 0.3313 0.5359 0.9687 

8 0.362 0.4313 0.6413 1.0687 

9 0.535 0.5313 0.7037 1.1687 

10 1.827 0.6313 0.9662 1.2687 

 

Այստեղ՝ 𝑛 = 10, 𝑑𝛼(𝑛) = 𝑑0.1(10) = 0.3687 (տե՛ս աղյուսակ Ա 12-ը), 

F𝑛(𝑥(𝑘)) =
𝑘−1

𝑛
 ,  F0(𝑥(𝑘)) = Φ(𝑥(𝑘)): 

Նկատելով, որ բոլոր 𝑥(𝑘) -երի համար բավարարվում են (10.16) պայ-

մանները՝ եզրակացնում ենք, որ 0.1 մակարդակով ℕ(0,1) նորմալ բաշ-

խվածության վերաբերյալ վարկածը չի հերքվում:  

 

       Խնդիրներ  

 

10.5. Ապացուցել, որ Կոլմոգորովի հայտանիշը համաձայնության 

հայտանիշ է: 

Ցուցում՝ օգտվել Կոլմոգորովի թեորեմներից: 

10.6. Դիցուք 𝐗 ~ P0 նմուշ է P0 բաշխումից, որտեղ F0(𝑥) = P0(ξ < 𝑥) 

բաշխման ֆունկցիան անընդհատ է: Սահմանենք հետևյալ վիճականին 

(𝜔2 վիճականի)՝ 

𝜔𝑛
2 = ∫ (F𝑛

∗ (𝑥) − F0(𝑥))
2
𝑑F0(𝑥)

+∞

−∞

: 

Ցույց տալ, որ  𝜔2 վիճականին ոչ պարամետրական է և գտնել E[𝜔𝑛
2] 

միջինը:  
 

Ցուցում՝ կատարել 𝑦 = F0(𝑥) փոփոխականի փոխարինում և օգտվել թեորեմ 

10.4-ից:  
 

Պատասխան՝   E[𝜔𝑛
2] 
  = 

1

6𝑛
 :       
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§ 10.2.  Համասեռության հայտանիշներ  

 

Վիճակագրության կիրառություններում շատ կարևոր է լինում ստու-

գել ստացված վիճակագրական տվյալների համասեռությունը, այսինքն 

պարզել  տարբեր   պայմաններում   ստացված   𝐗𝑛 = (𝑋1, … , 𝑋𝑛)   և   

 𝐘𝑚 == (𝑌1, … , 𝑌𝑚) նմուշների միևնույն բաշխում ունենալու հարցը: 

Այդպիսի խնդիրներ առաջանում են, օրինակ, որոշ ապրանքի որակը 

վերահսկելու ժամանակ, երբ տարբեր պայմաններում ստացված 

նմուշների միջոցով պահանջվում է ստուգել, փոխվե՞լ է, թե՝ ոչ այդ 

ապրանքի որակը: 
 

Ընդհանուր արմամբ խնդիրը դրվում է հետևյալ կերպ. 
 

Դիցուք 𝐗𝑛 ~ P1 -ը և 𝐘𝑚 ~ P2-ը՝ համապատասխանաբար, F1(𝑥) և 

F2(𝑥) բաշխման ֆունկցիաներով P1 և P2 անհայտ բաշխումներից վերցված 

միմյանցից անկախ նմուշներ են: Պահանջվում է ստուգել  

ℍ0 : F1(𝑥) ≡ F2(𝑥) (= F0(𝑥))  համասեռության վարկածն 

ընդդեմ  ℍ1: F1(𝑥) ≢ F2(𝑥)  երկընտրանքային վարկածի, կամ 

ℍ0 : P1 ≡ P2 (= P0) վարկածն ընդդեմ ℍ1 : P1 ≢ P2: 
 

Դիտարկենք այդ խնդիրը լուծման համար մի քանի հայտանիշ: 

 

       § 10.2.1. Սմիռնովի համասեռության հայտանիշ 

 

Դիցուք ստուգվում է համասեռության ℍ0 վարկածը, երբ F1(𝑥) և F2(𝑥) 

բաշխման ֆունկցիաներն անընդհատ են: Հայտանիշը հիմնված է 

𝐷𝑛𝑚 = 𝐷(𝐗𝑛, 𝐘𝑚) = sup
𝑥∈ℛ
|F1𝑛
∗ (𝑥) − F2𝑚

∗ (𝑥)| 

Սմիռնովի վիճականու հատկության վրա, որտեղ F1𝑛
∗ (𝑥)-ը և F2𝑚

∗ (𝑥)-ը, 

համապատասխանաբար, 𝐗𝑛 և 𝐘𝑚 նմուշների բաշխման ֆունկցիաներն 

են: Եթե ճիշտ է ℍ0 վարկածը, ապա ըստ Գլիվենկոյի թեորեմի (տե՛ս [15]-ի 
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թեորեմ 4.32-ը)՝ F1𝑛
∗ (𝑥) և F2𝑚

∗ (𝑥) բաշխման ֆունկցիաները բոլոր 𝑥 ∈ ℛ-ի 

համար  ունակ  գնահատականներ  են  F0(𝑥)  տեսական բաշխման ֆունկ- 

ցիայի համար, այնպես, որ 𝐷𝑛𝑚 վիճականին չպետք է էապես տարբերվի 

զրոյից (𝐷𝑛𝑚
P
→ 0), երբ 𝑛 և 𝑚 → ∞: Այսպիսով, 𝐷𝑛𝑚 վիճականու համե-

մատաբար «մեծ» արժեքները պետք է վկայեն ℍ0 վարկածի դեմ: 
 

        Տեղի ունի հետևյալ կարևոր պնդումը (տե՛ս Боровков [2])՝ 
 

 

       Թեորեմ 10.5 (Սմիռնով ): Եթե F0(𝑥) բաշխման ֆունկցիան անընդհատ 

է, ապա ℍ0 վարկածը բավարարվելու դեպքում ճիշտ է հետևյալ զուգամի-

տությունը՝ 
 

√
𝑛𝑚

𝑛 +𝑚
 𝐷𝑛𝑚

𝑑
→  𝕂,   𝑛 → ∞,   𝑚 → ∞,   

𝑛

𝑚
 → 𝑐 > 0: 

        Համաձայն Սմիռնովի թեորեմի՝ 

P0 (√
𝑛𝑚

𝑛 +𝑚
 𝐷𝑛𝑚 ≥ 𝜆𝛼) → P(𝜉 ≥ 𝜆𝛼) = 1 − K(𝜆𝛼) = 𝛼, 

որտեղ 𝜆𝛼-ն Կոլմոգորովի բաշխում ունեցող 𝜉 պատահական մեծության 𝛼 

մակարդակով ասիմպտոտիկ կրիտիկական արժեքն է: Այսպիսով, 

Սմիռնովի հայտանիշը տրվում է հետևյալ ասիմպտոտիկ կրիտիկական 

տիրույթով (𝑛,𝑚 > 20)` 

 𝒳1𝛼 = {(𝐱𝑛, 𝐲𝑚) ∶  √
𝑛𝑚

𝑛 +𝑚
 𝐷𝑛𝑚 ≥ 𝜆𝛼}: 

 

Պարզվում է (տե՛ս [2]), որ Սմիռնովի 𝐷𝑛𝑚 վիճականին, ինչպես և Կոլ-

մոգորովի  𝐷𝑛 վիճականին, ոչ պարամետրական է (բաշխումից «ազատ»): 

        Թեորեմ 10.6 (Սմիռնով ): Եթե F0(𝑥) ֆունկցիան անընդհատ է, ապա 

ℍ0 վարկածը բավարարվելու դեպքում 𝐷𝑛𝑚 վիճականու բաշխումը (ցան-

կացած  𝑛 ≥ 1  և  𝑚 ≥ 1 համար) կախված չէ  P0 բաշխումից: 

 

Օրինակ 10.5: Երկու հաստոցի արտադրանքից վերցվել են յուրա-

քանչյուրը 60 դետալից բաղկացած երկու նմուշ, որոնց չափման արդ-
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յունքները (մմ-ով) ներկայացված են «ցողուն և տերևներ» տեսքով (տե՛ս 

Հարությունյան [17])՝ 

I հաստոց                                                  II հաստոց 

14.1   4 4 8                                                  14.1   1 2 5 6 6 7 

14.2   0 4 4 8 8 8 8 9                                   14.2   3 3 3 4 4 5 5 8 

14.3   0 1 2 3 4 5 5 5 6 6 7 8 8                    14.3   0 0 1 3 5 5 6 6 6 6 6 6 7 8 8 8 8 8 9 

14.4   1 2 2 3 3 3 6 6 7 7 7 8 8 8 9              14.4   0 2 4 6 6 6 8 8 8 

14.5   0 0 1 4 4 4 6 6 6 8 8                          14.5   0 0 0 1 1 1 3 3 4 4 5 5 5 5 6 

14.6   0 4 4 6 6 9                                         14.6   0 8 9   

14.7   0 2 3                                                  14.7   − 

14.8   −                                                       14.8   − 

14.9   5                                                        14.9   −  

 

0.05 նշանակալիության մակարդակով ստուգենք վարկած, որ այդ 

հաստոցների համար կատարված չափումների շեղումները իրական 

արժեքից բաշխված են միևնույն օրենքով:  

𝐱𝑛 և 𝐲𝑛 նմուշների համար կազմենք ( ∑ 𝜈𝑖) կուտակված բացարձակ 

հաճախությունների աղյուսակը («ցողունի» 14 արժեքն աղյուսակում 

նշված չէ). 

𝐱𝑛   −.14 −.18  −.20 −.24  −.28  

∑𝜈𝑖  
  0  2  3 4  6  

𝐲𝑛 −.11 −.12 −.15 −.16 −.17 −.23 −.24 −.25 −.28 

∑𝜈𝑖  
0 1 2 3 5 6 9 11 13 

 

𝐱𝑛 −.29 −.30 −.31 −.32 −.33 −.34 −.35 −.36 −.37 

∑𝜈𝑖  
10 11 12 13 14 15 16 19 21 

𝐲𝑛   −.30 −.31   −.33   −.35 −.36 −.37 

∑𝜈𝑖  
 14 16  17  18 20 26 
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𝐱𝑛 −.38  −.41 −.42 −.43 −.46 −.47 −.48 −.49 

∑𝜈𝑖  
22   24 25 27 30 32 35 38 

𝐲𝑛 −.38 −.39 −.40 −.42 −.44 −.46  −.48  

∑𝜈𝑖  
27 32 33 34 35 36  39  

 

𝐱𝑛 −.50 −.51  −.54  −.56 −.58 −.60 −.64 

∑𝜈𝑖  
39 41   42   45 48 49 51 

𝐲𝑛  −.50 −.51 −.53 −.54 −.55 −.56  −.60  

∑𝜈𝑖  
42 45 48 50 52 56  57  

 

−.66 −.69 −.70 −.72 −.73 −.75 > .75    

53 55 56 57 58 59 60    

 −.68 −.69 > .69        

58 59 60        
 

 

Աղյուսակից դժվար չէ տեսնել, որ կուտակված բացարձակ հաճախու-

թյունների առավելագույն տարբերությունն է 56 – 45 = 11, որը համապա-

տասխանում է [14.55, 14.56) միջակայքին: Այսպիսով, 𝐷𝑛𝑛 =
11

60
 ≈ 0.183, և 

քանի որ  
 

√
𝑛

2
 𝐷𝑛𝑛 = √30 ∙ 0.183 ≈ 1.0023 < 1.36 = 𝜆0.05, 

 

ապա, համաձայն Սմիռնովի հայտանիշի, կարելի է համարել, որ տվյալ-

ները համապատասխանում են դետալների չափումների շեղումները 

իրական արժեքից միևնույն օրենքով բաշխված լինելու վարկածին:
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       § 10.2.2.  𝝌𝟐 համասեռության հայտանիշ 

 

Ի տարբերություն Սմիռնովի հայտանիշի, որի միջոցով համե-

մատվում էր միայն երկու նմուշ, այս մեթոդը թույլ է տալիս միաժամանակ 

հետազոտել ցանկացած վերջավոր թվով նմուշներ: 

Այսպիսով, ենթադրենք կատարվել են 𝑘 հատ 𝒰1, … ,𝒰𝑘 անկախ 

փորձերի սերիաներ, որտեղ յուրաքանչյուր 𝑗 -րդ սերիա բաղկացած է 𝑛𝑗 

հատ դիտումներից, 𝑗 = 1, …, 𝑘: Դիցուք յուրաքանչյուր 𝒰𝑗 սերիային 

համապատասխանում է 𝑠 տարբեր 𝑥𝑖, 𝑖 = 1,… , 𝑠 արժեքներ ընդունող 

𝜉𝑗 ~ P𝑗 պատահական մեծություն, և 𝐗𝒋
 = (𝑋𝑗1, … , 𝑋𝑗𝑛𝑗) այդ պատահական 

մեծության հետ կապված նմուշն է: Նշանակենք 𝜈𝑖𝑗
∗ -ով 𝐗𝒋

  վեկտորի 𝑥𝑖 

արժեքն ընդունող 𝑋𝑗𝑚, 𝑚 = 1, …, 𝑛𝑗 անդամների (պատահական) թիվը՝ 

𝜈𝑖𝑗
∗ = ∑ 𝟙{𝑥𝑖}(𝑋𝑗𝑚)

𝑛𝑗

𝑚=1

,   ∑𝜈𝑖𝑗 =

𝑠

𝑖=1

 𝑛𝑗 ,   ∑𝑛𝑗

𝑘

𝑗=1

= 𝑛 ∶  

Պահանջվում է ստուգել  ℍ0 վարկած, որ բոլոր փորձերը կատարվել 

են միևնույն 𝜉 ~ P պատահական մեծության նկատմամբ, այսինքն՝ ստու-

գել վարկած, որ  

ℍ0 ∶  P𝑗 = P,  𝑗 = 1, … , 𝑘  կամ  ℍ0 ∶  F𝑗(𝑥) = F(𝑥),  𝑗 = 1,… , 𝑘 

(այստեղ F𝑗(𝑥) բաշխման ֆունկցիան համապատասխանում է 𝜉𝑗 պատա-

հական մեծությանը, իսկ F(𝑥)-ը՝ 𝜉-ին):  

Նշանակելով  𝑝𝑖𝑗 = P𝑗(𝜉𝑗 = 𝑥𝑖),  𝑖 = 1, …, 𝑠,  𝑗 = 1,… , 𝑘 և 𝑝𝑖 = P(𝜉 = 𝑥𝑖)՝ 

ℍ0 վարկածը կարելի է ներկայացնել հետևյալ ձևով՝  

 ℍ0 ∶  𝑝𝑖𝑗 = 𝑝𝑖 ,   𝑖 = 1,… , 𝑠,   𝑗 = 1,… , 𝑘  (∑𝑝𝑖 = 1

𝑠

𝑖=1

):          (10.17) 

Քանի որ ℍ0 վարկածը բավարարվելու դեպքում 𝜈𝑖𝑗
∗  ~ 𝔹in (𝑛𝑗, 𝑝𝑖), ապա 

E(𝜈𝑖𝑗
∗ ) = 𝑛𝑗𝑝𝑖, և, համաձայն Պիրսոնի 𝝌𝟐 մեթոդի, որպես փորձնական և 

տեսական բաշխումների շեղման չափ պետք է վերցվի 𝝌𝟐 վիճականին՝  
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 𝜒̂𝑛
2(𝐩) =∑∑

(𝜈𝑖𝑗
∗ − 𝑛𝑗𝑝𝑖)

2

𝑛𝑗𝑝𝑖
 ,   𝐩 = (𝑝1, … , 𝑝𝑠) ∶ 

𝑘

𝑗=1

𝑠

𝑖=1

               (10.18) 

Սակայն, քանի որ 𝑝𝑖, 𝑖 = 1, …, 𝑠 հավանականություններն անհայտ են, 

ուստի որպեսզի կիրառվի  𝜒̂𝑛
2(𝐩) վիճականին, անհրաժեշտ է գնահատել 

𝑝𝑖 պարամետրերը: 

       Լեմմա 10.2: ℍ0 վարկածը բավարարվելու դեպքում 𝑝𝑖 պարամետրերի 

(𝑖 = 1,… , 𝑠) ըստ միացյալ 𝑛 ծավալի  𝐗 = (𝐗1
 , … ,  𝐗𝑘

 ) նմուշի ՃՄ գնահա-

տականները  

𝑝̂𝒊 =
1

𝑛
 ∑𝜈𝑖𝑗

∗  

𝑘

𝑗=1

 

վիճականիներն են: 

Ա պ ա ց ու ց ու մ: ℍ0 վարկածը բավարարվելու դեպքում  

𝐗 = (𝐗1
 , … ,  𝐗𝑘

 ) նմուշին համապատասխանող ճշմարտանմանության 

ֆունկցիան կլինի 

 𝑓𝐩(𝐗) =∏∏𝑝
𝑖

𝜈𝑖𝑗
∗

=∏𝑝𝑖
𝜈𝑖∙
∗

 ,

𝑠

𝑖=1

𝑘

𝑗=1

𝑠

𝑖=1

 

որտեղ   𝜈𝑖∙
∗  =∑𝜈𝑖𝑗

∗

𝑘

𝑗=1

: 

Գտնենք լոգարիթմական ճշմարտանմանության ֆունկցիան՝ 

 𝐿𝐩(𝐗) = ln 𝑓𝐩(𝐗) =∑𝜈𝑖∙
∗ ln 𝑝𝑖 :

𝑠

𝑖=1

 

Հաշվի առնելով 

 ∑𝑝𝑖 = 1 

𝑠

𝑖=1

 

պայմանը՝ կազմենք  𝐻(𝑝1, … , 𝑝𝑠;  𝜆)  լագրանժիանը` 

𝐻(𝑝1, … , 𝑝𝑠;  𝜆) =  𝐿𝐩(𝐗) − 𝜆 (∑𝑝𝑖 − 1

𝑠

𝑖=1

): 
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Էքստրեմումի անհրաժեշտ պայմանները կհանգեցնեն հետևյալ համա-

կարգին՝  

{
 
 

 
 
𝜕𝐻

𝜕𝑝𝑖
=
𝜈𝑖∙
∗

𝑝𝑖
 −  𝜆 = 0,   𝑖 = 1,… , 𝑠 

𝜕𝐻

𝜕𝜆
=∑𝑝𝑖 − 1

𝑠

𝑖=1

= 0                   

, 

որտեղից՝ 

𝑝𝑖 =
𝜈𝑖∙
∗

𝜆
 , և, քանի որ ∑𝑝𝑖 = 1,

𝑠

𝑖=1

 ապա ∑
𝜈𝑖∙
∗

𝜆
= 1,   այսինքն՝  𝜆̂ = ∑𝜈𝑖∙

∗ = 𝑛,

𝑠

𝑖=1

𝑠

𝑖=1

 

այնպես որ՝   𝑝̂𝒊 =
𝜈𝑖∙
∗

𝑛
=
1

𝑛
 ∑𝜈𝑖𝑗

∗ ∶

𝑘

𝑗=1

         ∎ 

       Այսպիսով, հայտանիշի վիճականին ընդունում է հետևյալ տեսքը՝ 

 𝜒̂𝑛
2(𝐩̂) = 𝑛∑∑

(𝜈𝑖𝑗
∗  − 𝑛𝑗 𝜈𝑖∙

∗ 𝑛⁄ )
2

𝑛𝑗𝜈𝑖∙
∗ = 𝑛(∑∑

(𝜈𝑖𝑗
∗ )
2

𝑛𝑗𝜈𝑖∙
∗

𝑘

𝑗=1

𝑠

𝑖=1

− 1) ∶      (10.18) 

𝑘

𝑗=1

𝑠

𝑖=1

 

 

       Տեղի ունի (տե՛ս Крамер [8]) հետևյալ պնդումը` 

       Թեորեմ 10.7:  ℍ0 վարկածը բավարարվելու դեպքում ճիշտ է  
 

  𝜒̂𝑛
2(𝐩̂)

𝑑
→ℍ2((𝑠 − 1)(𝑘 − 1))  

զուգամիտությունը : 

ℍ0 վարկածը ստուգող, 𝛼 չափ ունեցող 𝝌𝟐 հայտանիշի կրիտիկական 

տիրույթը կունենա հետևյալ տեսքը՝  

𝒳1𝛼 = {𝐱 ∶  𝜒̂𝑛
2(𝐩̂) > 𝜒𝛼

2((𝑠 − 1)(𝑘 − 1))}: 

Դիտողություն 10.9: Այժմ դիցուք պահանջվում է ստուգել պարա-

մետրական տեսք ունեցող  

 ℍ0 ∶  𝑝𝑖𝑗(𝛉) = 𝑝𝑖(𝛉),   𝑖 = 1,… , 𝑠,   𝑗 = 1,… , 𝑘  (∑𝑝𝑖(𝛉) = 1

𝑠

𝑖=1

)  
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համասեռության վարկածը, որտեղ 𝛉 ∈ Θ ⊂ ℛ𝑟(𝑟 ≥ 1), 𝑝𝑖𝑗(𝛉) = P𝛉(𝑋𝑗 = 𝑥𝑖): 
 

Ենթադրելով, որ ℍ0 վարկածը բավարարվում է, և, դիտարկելով 

տվյալները որպես 𝜈1∙
∗ , …, 𝜈𝑠∙

∗  խմբային հաճախություններով միացյալ 

նմուշ, պետք է գտնել 𝛉 պարամետրի 𝛉̂ բազմանդամային ՃՄ գնահա-

տականը: Այնուհետև որպես հայտանիշի վիճականի դիտարկել (10.18) 

բանաձևով որոշվող  𝜒̂𝑛
2(𝐩̂) վիճականին, որտեղ 𝐩̂ = (𝑝̂1, … 𝑝̂𝑠) (  𝑝𝑖 = 𝑝𝑖(𝛉) 

պարամետրական ֆունկցիաները փոխարինել 𝑝̂𝒊 = 𝑝𝑖(𝛉̂) գնահատական-

ներով): Թեորեմ 10.7-ը կփոխարինվի հետևյալ թեորեմով`  

        Թեորեմ 10.8:  ℍ0 վարկածը բավարարվելու դեպքում ճիշտ է  
 

 𝜒̂𝑛
2(𝐩̂)

𝑑
→ℍ2((𝑠 − 1)𝑘 − 𝑟) ,   𝑛 → ∞  

 

զուգամիտությունը։ 

Մասնավոր դեպքեր 

1. 𝑠 = 2 (𝑖 = 1, 2, 𝑗 = 1,… , 𝑘):   
 

Դիցուք 𝜉𝑗-երը, 𝑗 = 1,… , 𝑘 յուրաքանչյուրը 0 և 1 արժեք ընդունող ան-

կախ Բերնուլիի պատահական մեծություններ են: Նշանակենք`  

𝐴 = (𝜉𝑗 = 1)-ով հաջողությունը և  𝐴̅  = (𝜉𝑗 = 0)-ով` անհաջողությունը: 

Համասեռության ℍ0 ∶  𝑝𝑖𝑗 = 𝑝𝑖 վարկածը նշանակում է, որ բոլոր 

𝒰յ ( 𝑗 = 1,… , 𝑘) փորձերի սերիաներում 𝐴  պատահույթն ունի ի հայտ 

գալու  միևնույն  հաստատուն (անհայտ)  P(𝐴) = 𝑝1 = 𝑝  (ℙ(𝐴̅) = 𝑝2 = 𝑞 =

= 1 − 𝑝) հավանականությունը:  

Համաձայն լեմմա 10.2­ի՝ 𝑝 պարամետրի ՃՄ գնահատականը 
 

 𝑝̂ =  
1

𝑛
∑𝜈𝑗

∗

𝑘

𝑗=1

 

 

վիճականին է, որտեղ 𝜈𝑗
∗ = 𝜈1𝑗

∗ -ը 𝐴 պատահույթի ի հայտ գալու (պատա-

հական) թիվն է փորձերի 𝑗-րդ 𝒰𝑗 սերիայում:  𝜒̂𝑛
2(𝑝̂) վիճականին (տե՛ս 

(10.18)) կներկայացվի հետևյալ ձևով (տե՛ս խնդիր 10.7-ը)՝  
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 𝜒̂𝑛
2(𝑝̂) = 𝑛∑

(𝜈1𝑗
∗ )

2

𝑛𝑗𝜈1∙
∗

𝑘

𝑗=1

+ 𝑛∑
(𝜈2𝑗
∗ )

2

𝑛𝑗𝜈2∙
∗

𝑘

𝑗=1

 − 𝑛 = 

 

 =  
1

𝑝̂
 ∑

(𝜈𝑗
∗)
2

𝑛𝑗

𝑘

𝑗=1

 + 
1

𝑞̂
 ∑

(𝑛𝑗 − 𝜈𝑗
∗)
2

𝑛𝑗

𝑘

𝑗=1

− 𝑛 =
1

𝑝̂𝑞̂
 ∑

(𝜈𝑗
∗)
2

𝑛𝑗
− 𝑛

𝑝̂

𝑞̂

𝑘

𝑗=1

   (10.19)  

 

 

(𝜈1∙
∗ = 𝑛𝑝̂,   𝜈2∙

∗ = 𝑛𝑞̂,   𝑞̂ = 1 − 𝑝̂,   𝜈1𝑗
∗ = 𝜈𝑗

∗,  𝜈2𝑗
∗ = 𝑛𝑗 − 𝜈𝑗

∗): 
 

2. 𝑘 = 2 (𝑖 = 1,… , 𝑠, 𝑗 = 1, 2): 
 

 

Երկու նմուշի դեպքում ℍ0 ∶  𝑝𝑖𝑗 = 𝑝𝑖 վարկածը ստուգող  𝜒̂𝑛
2(𝐩̂) վիճա-

կանին կընդունի հետևյալ տեսքը (տե՛ս խնդիր 10.8-ը)՝ 
 

 𝜒̂𝑛
2(𝐩̂) = 𝑛1𝑛2∑

1

𝜈𝑖1
∗ + 𝜈𝑖2

∗  (
𝜈𝑖1
∗

𝑛1
 − 
𝜈𝑖2
∗

𝑛2
)

2

∶                       (10.20)

𝑠

𝑖=1

 

 

Նշանակելով` 𝜔𝑖 =
𝜈𝑖1
∗

𝜈𝑖1
∗  + 𝜈 𝑖2

∗  , 𝜔 =
𝑛1

𝑛1 + 𝑛2
 ՝ (10.20) բանաձևը կբերվի  

 

 𝜒̂𝑛
2(𝐩̂) =

1

𝜔(1 − 𝜔)
 (∑𝜔𝑖𝜈𝑖1

∗ −𝜔𝑛1

𝑠

𝑖=1

)                           (10.21)  

 

տեսքի (տե՛ս խնդիր 10.9): 
 

Օրինակ 10.6: Ուսումնասիրվում է որոշակի դեղամիջոցի ազդեցու-

թյունը՝ կախված նրա կիրառման երեք եղանակից: Փորձարկման արդ-

յունքները բերվում են հետևյալ աղյուսակում՝  
 

                               Կիրառման եղանակ 

Ազդեցություն 

I II III 

Դրական 15 19 18 

Բացասական 26 25 22 
 

0.05 նշանակալիության մակարդակով ստուգել դեղամիջոցի ազդե-

ցության կախվածությունը նրա կիրառման եղանակից:  
 

 

Այստեղ  𝑠 = 2,  𝑘 = 3:  𝜒𝑛
2(𝑝̂) վիճականին հավասար է (տե՛ս (10.19)) 
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𝜒𝑛
2(𝑝̂) =

1

𝑝̂𝑞̂
 ∑

(𝜈𝑗)
2

𝑛𝑗
− 𝑛

𝑝̂

𝑞̂

3

𝑗=1

 , 

 

որտեղ` 
 

   𝜈1 = 15,  𝜈2 = 19,  𝜈3 = 18, 𝑛1 = 41, 𝑛2 = 44,  𝑛3 = 40, 𝑛 = 125, 
 

𝑝̂ =
1

𝑛
 ( 𝜈1 + 𝜈2 + 𝜈3) = 0.416,   𝑞̂ = 1 − 𝑝̂ = 0.584 : 

 

Հետևաբար՝  

𝜒𝑛
2(𝑝̂) =

1

0.416 ∙ 0.584
∙ (
152

41
+
192

44
+
182

40
) − 125 ∙

0.416

0.584
≈ 0.66 ∶ 

 

Քանի որ 𝜒𝑛
2(𝑝̂) ≈ 0.66 <  5.992 = 𝜒0.05

2 (2), ապա 0.05 մակարդակով դեղա-

միջոցի ազդեցությունը կախված չէ նրա կիրառման եղանակից: Իրական 

հասանելի նշանակալիության մակարդակը P-V =  P(𝜒2
2 ≥ 0.66) ≈ 0.7, 

որտեղ 𝜒2
2-ն 2 ազատության աստիճաններով 𝝌𝟐 բաշխում ունեցող պա-

տահական մեծություն է: Այստեղից կարելի է եզրակացնել, որ մոտավո-

րապես 30 % դեպքերում պետք է սպասել, որ դեղամիջոցի ազդեցությունը 

կլինի կախված նրա կիրառման եղանակից: 

 

       § 10.2.3. Քանորդիչների և նշանների հայտանիշներ 
 

Քանորդիչների հայտանիշ 

Դիցուք  𝐗  ~ P ∈ 𝒫` P բաշխումով 𝜉 պատահական մեծության նմուշ է, 

որտեղ 𝒫 դասի բաշխումներին համապատասխանող F(𝑥) ∈ ℱ բաշխման 

ֆունկցիաներն անընդհատ են: Դիտարկենք 

ℍ0:  F(𝜁𝑖) = 𝑝𝑖,  𝑖 = 1,… , 𝑟 − 1 

բարդ վարկածը, որտեղ − ∞ < 𝜁1 < ⋯ < 𝜁𝑟−1 < ∞, 0 < 𝑝1 < ⋯ < 𝑝𝑟−1 < 1 

տրված թվեր են ( 𝜁𝑖-երը F(𝑥) բաշխման ֆունկցիայի 𝑝𝑖 մակարդակով 

քանորդիչներն են (տե՛ս [15],սահմանում 1.14)): ℍ0 վարկածը բարդ է, 

որովհետև այն պարունակում է նշված քանորդիչներ ունեցող բոլոր 

անընդհատ  F(𝑥) ∈ ℱ բաշխման ֆունկցիաները:  
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Նշանակենք՝ 

  ∆𝑗 = [𝜁𝑗−1 ,  𝜁𝑗),   𝑗 = 1,… , 𝑟,   որտեղ  𝜁0 = − ∞,  𝜁𝑟 =  ∞,   𝜈𝑗
∗  = ∑𝟙∆𝑗(𝑋𝑖) ∶ 

𝑛

𝑖=1

 

Այսպիսով, ℍ0 վարկածն առաջացնում է 𝒳 = 𝜉(Ω) տարածության 

տրոհում՝ 

𝒳 =⋃∆𝑗,   ∆𝑖 ∩ ∆𝑗= ∅,   𝑖 ≠ 𝑗:

𝑟

𝑗=1

 

ℍ0 վարկածը բավարարվելու դեպքում 𝛎∗ վեկտորն ունի բազմանդամային 

բաշխում՝    𝛎∗ = (𝜈1
∗, … , 𝜈𝑟

∗)  ~  𝕄(𝑛;  𝑝1
0, … , 𝑝𝑟

0),  որտեղ   𝑝𝑖
0 = 𝑝𝑖 − 𝑝𝑖−1,   

 𝑖 == 1,… , 𝑟,  𝑝0 = 0,  𝑝𝑟 = 1: 

Մյուս կողմից, ℍ0 վարկածը համարժեք է 
 

ℍ0
′  :  P(𝜉 ∈ ∆𝑗) = 𝑝𝑗

0,  𝑗 = 1,… , 𝑟 
 

վարկածին, այնպես որ այն ստուգելու համար կարելի է կիրառել  
 

 𝜒̂𝑛
2 =∑

(𝜈𝑖
∗ − 𝑛𝑝𝑖

0)
2

𝑛𝑝𝑖
0

𝑟

𝑖=1

 
𝑑
→ ℍ2(𝑟 − 1),   𝑛 → ∞                    (10.22) 

զուգամիտության վրա հիմնված 𝝌𝟐 համաձայնության հայտանիշը: 

Հետևաբար, տվյալ 𝛼 նշանակալիության մակարդակի համար քանոր-

դիչների հայտանիշը որոշվում է 

𝒳1𝛼 = {𝐱 ∶  𝜒̂𝑛
2  ≥  𝜒𝛼

2(𝑟 − 1)} 

կրիտիկական տիրույթով: 

Նշանների հայտանիշ և համասեռություն 

 Նշանների հայտանիշ անվանվում է 𝑟 = 2, 𝑝 = 1 2⁄  դեպքին համա-

պատասխանող քանորդիչների հայտանիշը: Եվ այսպես, դիցուք 𝐗 ~ F 

նմուշը համապատասխանում է անընդհատ բաշխման ֆունկցիաների ℱ 

դասից F = F(𝑥) բաշխման ֆունկցիային, և ստուգվում է  

ℍ0 ∶  F(𝜁1) = 1 2⁄  ,   − ∞ < 𝜁1 < ∞ 
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վարկածը, որտեղ 𝜁1 = 𝑥𝑚𝑒𝑑  -ը F(𝑥) բաշխման ֆունկցիայի միջնարժեքն է 

(մեդիանը): Վարկածը ստուգող (10.22)  𝜒̂𝑛
2 վիճականին այս դեպքում կըն-

դունի հետևյալ տեսքը՝ 
 

 𝜒̂𝑛
2 =

2

𝑛
(𝜈1
∗ −

𝑛

2
)
2

+ 
2

𝑛
(𝜈2
∗ −

𝑛

2
)
2

= 
4

𝑛
(𝜈1
∗ −

𝑛

2
)
2

, 

 

որտեղ  

𝜈1
∗ =∑𝟙(−∞, 𝜁1 )

𝑛

𝑖=1

(𝑋𝑖) =∑𝟙(−∞,0)(𝑋𝑖 − 𝜁1)

𝑛

𝑖=1

 

 

վիճականին ցույց է տալիս (− ∞,  𝜁1 ) միջակայքում ընկած 𝑋𝑖 նմուշային 

արժեքների թիվը կամ բացասական արժեքներ ընդունող 𝑋𝑖 − 𝜁1 անդամ-

ների թիվը, 𝑖 = 1,… , 𝑛: Այնպես որ նշանների հայտանիշը տրվում է 
 

 𝒳1𝛼 = {𝐱 ∶  
4

𝑛
(𝜈1 −

𝑛

2
)
2

≥ 𝜒𝛼
2(1)}                          (10.23) 

 

կրիտիկական տիրույթի միջոցով: 
 

 

Այժմ այս հայտանիշը կիրառենք համասեռության վերաբերյալ վար-

կածը ստուգելու համար: 
 

Դիցուք (𝐗, 𝐘)𝑛  = ((𝑋1, 𝑌1),… , (𝑋𝑛, 𝑌𝑛)) երկչափ 𝐔 = (ξ, η) պատահա-

կան վեկտորին համապատասխանող նմուշ է: Պահանջվում է ստուգել ℍ0 

վարկած, որ ξ և η պատահական մեծություններն անկախ են և միատեսակ 

բաշխված, այսինքն՝ ստուգել  

ℍ0 : F𝐔(𝑥, 𝑦) = F(𝑥) ∙ F(𝑦), 

վարկածը, որտեղ F(𝑥) –ը որոշակի անընդհատ բաշխման ֆունկցիա է: 

Վարկածը ստուգելու համար կառուցենք 𝑍𝑖 = 𝑋𝑖 − 𝑌𝑖 , 𝑖 = 1, … , 𝑛 

պատահական մեծությունները: Եթե ℍ0 վարկածը բավարարվում է, ապա 

տեղի ունի հետևյալ պայմանը՝ 
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P(𝑍𝑖 < 0) = ∫ 𝑑

 

(𝑥 − 𝑦<0)

F𝐔(𝑥, 𝑦) = ∫ 𝑑F(𝑥)∫ 𝑑F(𝑦) = ∫ (1 − F(𝑥))

+∞

−∞

+∞

𝑥

+∞

−∞

𝑑F(𝑥) 

=
1

2
= P(𝑍𝑖 > 0), 

և ℍ0 վարկածը բերվում է 
 

ℍ0
′ ∶  F𝐙(0) = 1 2⁄  

համարժեք տեսքի: Այս դեպքում  

𝜈1
∗ =∑𝟙(−∞,0)(𝑍𝑖)

𝑛

𝑖=1

, 

և 𝛼 նշանակալիության մակարդակով կրիտիկական տիրույթը կլինի   

𝒳1𝛼 = {𝐱 ∶  
4

𝑛
(𝜈1 −

𝑛

2
)
2

≥ 𝜒𝛼
2(1)} ∶ 

Դիտողություն: Հայտանիշի հիմնական թերությունն այն է, որ հայ-

տանիշը «ոչ տնտեսաբար» է օգտագործում տվյալներում առկա տեղե-

կատվությունը, և այդ պատճառով այն նպատակահարմար է կիրառել 

վիճակագրական վերլուծության սկզբնական փուլում: Բացի այդ, հայտա-

նիշը կիրառվում է միայն հավասար ծավալ ունեցող նմուշների համար: 

 Օրինակ 10.7: Ստորև բերված են 40 տարիների ընթացքում Մոսկվա 

(x) և Յարոսլավլ (y) քաղաքների՝ հունիս ամսվա ընթացքում գրանցված 

օդի միջին ջերմաստիճաններին վերաբերող տվյալները՝  

𝑥 12.0 12.0 12.0 12.0 12.8 13.8 13.1 13.0 13.9 14.2 

𝑦 10.8 11.3 12.0 13.0 10.9 10.0 11.5 13.0 10.1 10.0 

𝑥 14.0 14.0 13.9 15.0 14.9 14.9 16.0 15.0 15.5 15.9 

𝑦 10.0 12.0 12.4 11.0 13.0 14.2 13.8 16.0 13.9 14.7 

𝑥 16.0 15.9 16.0 16.9 17.2 16.9 16.9 17.0 16.8 17.5 

𝑦 13.0 15.0 16.0 12.9 13.9 14.8 15.0 16.0 17.0 16.0 

𝑥 18.0 18.0 18.1 18.4 19.2 19.3 20.0 20.1 14.0 14.0 

𝑦 14.0 14.8 16.0 17.8 15.0 16.1 17.0 17.7 14.8 15.2 
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           0.05 մակարդակով ստուգել այդ տվյալների՝ միևնույն բաշխումներն 

ունեցող 𝜉 և 𝜂 պատահական մեծությունների արժեքներ լինելու վար-

կածը: 

Օրինակում բերված 𝑥𝑖 − 𝑦𝑖 տարբերությունների բացասական ար-

ժեքների 𝜈1 թիվը հավասար է 𝜈1 = 5, ուստի, հաշվի առնելով (10.23)-ը, 

կստնանք` 

 𝜒̂𝑛
2 =

4

𝑛
(𝜈1 −

𝑛

2
)
2

=
4

40
(5 − 20)2 =

1

10
∙ 225 = 22.5 > 3.843 = 𝜒0.05

2 (1): 

Հետևաբար, 0.05 նշանակալիության մակարդակով վարկածը 

հերքվում է:  

 

       § 10.2.4. Ման – Ուիտնիի ռանգային U հայտանիշ 

 

Հավասար ծավալ ունեցող 𝐗 և 𝐘  երկու նմուշների համար այս հայ-

տանիշը առաջին անգամ դիտարկել է Ուիլկոկսոնը : Տարբեր ծավալի 

նմուշների համար այն ընդհանրացրել են Մանը և Ուիտնին : Հայտանիշը 

պատկանում է այսպես կոչված ռանգային հայտանիշների ցանկին: 

 𝐗𝑛 = (𝑋1, … , 𝑋𝑛) նմուշի  𝑋𝑖-րդ  անդամի  ռանգ  կոչվում է  𝑋(1) ≤ ⋯ ≤

≤ 𝑋(𝑛) վարիացիոն շարքում այդ անդամի զբաղեցրած տեղի 𝑹𝒊 համարը: 

Դիցուք 𝐗𝑛~ F1 և 𝐘𝑚~ F2 միմյանցից անկախ նմուշներ են: Ենթա-

դրենք, բացի այդ, որ համապատասխան F1(𝑥) և F2(𝑥) բաշխման ֆունկ-

ցիաներն անընդհատ են: Դիտարկվում է  

ℍ0 : F1(𝑥) ≡ F2(𝑥) համասեռության վարկածն ընդդեմ ℍ1 : F1(𝑥) ≢ 

F2(𝑥) երկընտրանքայինի: 

 

Կազմենք (𝐗𝑛, 𝐘𝑚) = (𝑋1, … , 𝑋𝑛, 𝑌1, … , 𝑌𝑚) միացյալ նմուշը և դրա վա-

րիացիոն շարքը: Դիցուք 𝑅1, … , 𝑅𝑛-ը միացյալ նմուշում 𝑋1, … , 𝑋𝑛 անդամ-

ների ռանգերն են: 
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 𝑇 =  ∑  𝑅𝑖
𝑛
𝑖=1   վիճականին, որը ցույց է տալիս այն տեղերի համար-

ների (ռանգերի) գումարը, որը զբաղեցնում են միացյալ վարիացիոն 

շարքում  𝐗𝑛 նմուշի անդամները, կոչվում է Ուիլկոկսոնի վիճականի: 
 

(𝐗𝑛, 𝐘𝑚) միացյալ նմուշի վարիացիոն շարքի համար սահմանենք 

հետևյալ պատահական մեծությունները՝ 

𝑍𝑟𝑠 = {
1,   եթե  𝑋𝑟 < 𝑌𝑠 
0,   եթե  𝑋𝑟 ≥ 𝑌𝑠 

: 

 𝑈 = 𝑈(𝑛,𝑚) =∑ ∑Zrs 

𝑚

s=1

𝑛

r=1

 

վիճականին, որը ցույց է տալիս այն  դեպքերի թիվը, երբ միացյալ վարիա-

ցիոն շարքում 𝐗𝑛 նմուշի անդամները նախոր-դում են 𝐘𝑚 նմուշի անդամ-

ներին, կոչվում է Ման - Ուիտնիի 𝑼 վիճականի կամ ուղղակի 𝑼 վիճա-

կանի: 

Կարելի է ցույց տալ, որ 𝑇 և 𝑈 վիճականիների միջև տեղի ունի հե-

տևյալ կապը՝ 

 𝑇 + 𝑈 = 𝑛𝑚 +
𝑛(𝑛 + 1)

2
∶                                    (10.24) 

𝑼 վիճականու միջինը և ցրվածքը հավասար են (տե՛ս խնդիր 10.10)։ 

 E(𝑈) = 𝑛𝑚𝑎,  
 

var (𝑈) = 𝑛𝑚[𝑎 + (𝑛 − 1)𝑏 + (𝑚 − 1)𝑐 − (𝑛 +𝑚 − 1)𝑎2],          (10.25) 
 

որտեղ 

𝑎 = P(𝑋1 < 𝑌1) = ∫ F1(𝑥)dF2(𝑥)

+∞

−∞

,   𝑏 = ∫ F1
2(𝑥)

+∞

−∞

dF2(𝑥),  

 

𝑐 = ∫ (1 − F2(𝑥))
2
dF1(𝑥):

+∞

−∞

 

Մասնավորապես, ℍ0 վարկածը բավարարվելու դեպքում 
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𝑎 =
1

2
 ,   𝑏 = 𝑐 =

1

3
  և  E(𝑈) =

𝑛𝑚

2
,   var (𝑈) =

𝑛𝑚(𝑛 +𝑚 + 1)

12
∶ 

ԿՍԹ -ից բխում է հետևյալ պնդումը (տե՛ս Кендалл, Стьюарт [6])՝ 

        Թեորեմ 10.9 (Ման −Ուիտնի): ℍ0 վարկածը բավարարվելու դեպքում 

ճիշտ է  
 

√ 
12

𝑛𝑚(𝑛 +𝑚 + 1)
 (𝑈 −

𝑛𝑚

2
) 
𝑑
→ ℕ(0,1),   𝑛,𝑚 → ∞  

 

զուգամիտությունը։ 

Թեորեմը  գործնականում կարելի է կիրառել, երբ  𝑛,𝑚 ≥ 4  և  𝑛 +𝑚 ≥ 20: 

Դիտողություն 10.10: ℍ0 վարկածն ընդդեմ ℍ1: 𝑎 ≠ 
1

2
 –ի մրցող վար-

կածը ստուգող ունակ հայտանիշն ունի հետևյալ ասիմպտոտիկ կրիտի-

կական տիրույթ (մեծ 𝑛-երի և 𝑚-երի դեպքում)՝ 
 

 

𝒳1𝛼 = {(𝐱𝑛, 𝐲𝑚) ∶  |𝑢(𝑛,𝑚) −
𝑛𝑚

2
| ≥ √

𝑛𝑚(𝑛 +𝑚 + 1)

12
 𝑧𝛼 2⁄ } , 

որտեղ  𝑢(𝑛,𝑚) -ը  𝑈(𝑛,𝑚)  վիճականու  արժեքն  է, երբ  𝐗𝑛(𝜔0) = 𝐱𝑛
  և

𝐘𝑚(𝜔0) = 𝐲𝑚
 :  

 

       Դիտողություն 10.11:   Համապատասխան  միակողմանի  հայտանիշ-

ները կլինեն՝ 

ℍ1
− ∶  𝑎 <

1

2
  երկընտրանքային վարկածի դեպքում՝ 

 

𝒳1𝛼 = {(𝒙𝑛, 𝒚𝑚) ∶  𝑢(𝑛,𝑚) ≤ 𝑡𝛼
−(𝑛,𝑚)} 

ասիմպտոտիկ կրիտիկական տիրույթով  հայտանիշը, և 

ℍ1
+ ∶  𝑎 >

1

2
   

երկընտրանքային վարկածի դեպքում՝ 

𝒳1𝛼 = {(𝐱𝑛, 𝐲𝑚) ∶  𝑢(𝑛,𝑚) ≥ 𝑡𝛼
+(𝑛,𝑚)} 
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ասիմպտոտիկ կրիտիկական տիրույթով  հայտանիշը, որտեղ 
 

𝑡𝛼
∓(𝑛,𝑚) =

𝑛𝑚

2
∓ √

𝑛𝑚(𝑛 +𝑚 + 1)

12
∙ 𝑧𝛼 ∶ 

            Օրինակ 10.8: 0.1 նշանակալիության մակարդակով ստուգենք որոշ 

ընկերության տղամարդկանց և կանանց աշխատողների միջև տարի-

քային նշանակալի տարբերության վերաբերյալ վարկածը՝ հիմք ընդու-

նելով հետևյալ տվյալները՝ 

Տարիքը 

(տղամարդիկ, 𝒙𝑛) 

 

31 

 

25 

 

38 

 

33 

 

42 

 

40 

 

44 

 

26 

 

43 

 

35 

Տարիքը 

(կանայք, 𝒚𝑛) 

 

44 

 

30 

 

34 

 

47 

 

35 

 

32 

 

35 

 

47 

 

48 

 

34 
     

  Կազմենք տվյալների վարիացիոն շարքերը՝  
 

 

 

(10.26) 

 

Այնուհետև գտնենք երկու եղանակով Ման – Ուիտնիի 𝑼 վիճականու ար-

ժեքը՝ նախապես կառուցելով 𝐳(2𝑛) = (𝐱(𝑛), 𝐲(𝑛)) միացյալ նմուշի վարիա-

ցիոն շարքը: 

 

𝐳(2𝑛) միացյալ նմուշի վարիացիոն շարքն է՝  
 

 

25 26 30 31 32 33 34 34 35 35 35 38 40 42 43 44 44 47 47 48 
 

            I եղանակ  
 

Օգտվենք  𝑢 = 𝑛2 + 
𝑛(𝑛−1)

2
 –  𝑡  բանաձևից (տե՛ս (10.24)), որտեղ 

𝑇(𝜔0) = 𝑡 -ն  և  𝑈(𝜔0) = 𝑢 -ն Ուիլկոկսոնի և Ման-Ուիտնիի վիճականի-

ների արժեքներն են: Գտնենք  

  𝑇 =  ∑𝑅𝑖  վիճականու   𝑡 =∑𝑟𝑖

𝑛

𝑖=1

 արժեքը,   որտեղ  𝑟𝑖  = 

𝑛

𝑖=1

𝑅𝑖(𝜔0) − երը  

 

𝒙(𝑛) 25 26 31 33 35 38 40 42 43 44 

 𝒚(𝑛) 30 32 34 34 35 35 44 47 47 48 
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𝑥𝑖  արժեքների ռանգերն են  𝐳(2𝑛) միացյալ նմուշի վարիացիոն շարքում:  

Ունենք՝ 

𝑡 = 4 + 1 + 12 + 6 + 14 + 13 + 16.5 + 2 + 15 + 10 = 93.5: 

 ↑      ↑      ↑       ↑        ↑        ↑          ↑        ↑       ↑         ↑ 

 𝐱𝑛  31   25   38    33     42     40       44     26    43      35: 

Օրինակը շարունակելու համար բերենք հետևյալ դիտողություն: 

Դիտողություն 10.12: Տարբեր նմուշների համընկնող արժեքների 

ռանգը միացյալ նմուշի վարիացիոն շարքում հավասար է այդ շարքում 

տվյալ արժեքներին համապատասխանող տեղերի համարների թվաբա-

նական միջինին: 

Օրինակ, 𝐱𝑛 նմուշի 44 արժեքի 𝑟7 ռանգը միացյալ նմուշի վարիացիոն 

շարքում կլինի  հավասար  𝑟7 =
16+17

2
 = 16.5, իսկ 35 արժեքի ռանգը՝ 

𝑟10 =
9+10+11

3
 = 10: Այսպիսով, 𝑡 = 93.5, ուստի 𝑢 = 𝑛2 + 

𝑛(𝑛−1)

2
 –  𝑡 =  

= 102  +  
10∙9

2
− 93.5 = 61.5: 

II եղանակ 

Այժմ հաշվենք 𝑼 վիճականու 𝒖 արժեքը՝ օգտվելով սահմանումից, այ-

սինքն՝ հաշվենք այն բոլոր դեպքերի թիվը, երբ 𝐱𝑛 նմուշի անդամները 

նախորդում են միացյալ նմուշի վարիացիոն շարքում 𝐲𝑛 նմուշի անդամ-

ներին: 

Վարիացիոն շարքերի (10.26) ներկայացումից հեշտ է տեսնել, որ այդ 

դեպքերի թիվը  𝐱𝑛 նմուշի յուրաքանչյուր անդամի համար կլինի հավա-

սար՝  
 

31-ը՝ 9 դեպք (44, 34, 47, 35, 32, 35, 47, 48, 34) , 25-ը՝ 10 դեպք, 38-ը՝  

4 դեպք (44, 47, 47, 48), 33-ը՝ 8, 42-ը՝ 4, 40-ը՝ 4, 44-ը՝ 3.5, 26-ը՝ 10, 43-ը՝  

4, 35-ը՝ 5:  
 

Այսպիսով` 𝑢 = 9 + 10 + 4 + 8 + 4 + 4 + 3.5 + 10 + 4 + 5 = 61.5: 
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Նշենք այստեղ, որ 44 արժեքը նախորդում է միացյալ նմուշի վարիա-

ցիոն շարքում 𝒚𝑛 նմուշի 44, 47, 47, 48 արժեքներին: Չորս արժեքների փո-

խարեն վերցվում է 3.5-ը, քանի որ 44 արժեքը կրկնվում է երկու նմուշ-

ներում: Նույն ձևով 35 արժեքը նախորդում է 𝒚𝑛 նմուշի 35, 35, 44, 47, 47, 48 

արժեքներին: Կրկնվող 35 արժեքը վերցվում է մեկ անգամ, ուստի 

քանակը հավասար 5-ի:  
 

Այժմ ստուգենք վարկածը:  
 

Քանի որ  𝑢 = 61.5,  
𝑛𝑚

2
=
𝑛2

2
= 50, կստանանք` 

𝑢(𝑛,𝑚) −
𝑛𝑚

2
= 𝑢 −

𝑛2

2
= 11.5 ∶ 

Մյուս կողմից՝ 
 

 

 √
𝑛𝑚(𝑛 +𝑚 + 1)

12
= √175  ≈ 13.23,   𝑧𝛼 2⁄ = 𝑧0.05 = 1.645   և 

√
𝑛𝑚(𝑛 +𝑚 + 1)

12
 𝑧𝛼 2⁄ ≈ 21.761: 

Այստեղից՝ 

𝑢(𝑛,𝑚) −
𝑛𝑚

2
= 11.5 < 21.761 = √

𝑛𝑚(𝑛 +𝑚 + 1)

12
 𝑧𝛼 2⁄  , 

 

հետևաբար վարկածը չի հերքվում, այսինքն՝ տղամարդկանց և կանանց 

միջև 0.1 մակարդակով տարիքային նշանակալի տարբերություն չկա:   
 

        Խնդիրներ 
 

10.7.  Ապացուցել (10.19)) բանաձևը: 

        10.8.  Ապացուցել (10.20) բանաձևը: 

        10.9.  Ապացուցել (10.21) բանաձևը: 

        10.10. Ապացուցել (10.25) բանաձևերը: 
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       § 10.3. Անկախության հայտանիշներ 

 

       Դիցուք տրված է անհայտ  F𝑍(𝑥, 𝑦)  բաշխման ֆունկցիայով  𝐙 = (𝑋, 𝑌)  

պատահական վեկտորի  (𝐗, 𝐘)𝑛 = ((𝑋1, 𝑌1), … , (𝑋𝑛, 𝑌𝑛))  նմուշը: Պահանջ-

վում է ստուգել  𝑋  և  𝑌  պատահական մեծությունների անկախության վե-

րաբերյալ վարկածը` 
 

ℍ0 ∶  F𝐙(𝑥, 𝑦) ≡ F𝑋(𝑥) ∙ F𝑌(𝑦):                             (10.27)  
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       § 10.3.1.  𝝌𝟐 անկախության հայտանիշ 

 

 Դիցուք 𝐙-ը դիսկրետ պատահական վեկտոր է, ընդ որում 𝑋 պատա-

հական մեծությունն ընդունում է 𝑎1, , … , 𝑎𝑠 տարբեր արժեքներ, իսկ 𝑌-ը՝ 

𝑏1,  𝑏2, … ,  𝑏𝑘 արժեքներ: Եթե s և k ծավալները բավականաչափ մեծ են, 

կամ եթե 𝑋-ը և 𝑌-ը անընդհատ պատահական մեծություններ են, նշա-

նակենք` ∆1
′ , ∆2

′ , …, ∆𝑠
′ -ով 𝑋 պատահական մեծության արժեքների բազ-

մության տրոհումը միջակայքերի, իսկ ∆1
′′, ∆2

′′, …, ∆𝑘
′′-ով՝ 𝑌-ի արժեքների 

տրոհումը:  Այնուհետև  նշանակենք  𝜈𝑖𝑗-ով  (𝐗, 𝐘)𝑛  նմուշում  (𝑎𝑖 ,  𝑏𝑗),  

𝑖 = 1,… , 𝑠 ,   𝑗 = 1,… , 𝑘  զույգերի թիվը (կամ ∆𝑖
′ × ∆𝑗

′′  բազմություններում 

պարունակվող (𝑋𝑙 ,  𝑌𝑙) զույգերի թիվը), այնպես որ  ∑ ∑ 𝜈𝑖𝑗
𝑘
𝑗=1

𝑠
𝑖=1 = 𝑛: 

 

 𝑋 և 𝑌 պատահական մեծությունների զուգակցության կամ երկու 

մուտքով աղյուսակ  է կոչվում հետևյալ աղյուսակը ՝ 
 

                 𝑌 

 𝑋 

 𝑏1 

( ∆1
′′) 

 𝑏2 

(∆2
′′) 

……..  𝑏𝑘 

(∆𝑘
′′)  𝜈𝑖∙ =∑𝜈𝑖𝑗

𝑘

𝑗=1

 

𝑎1( ∆1
′ ) 𝜈11 𝜈12 …….. 𝜈1𝑘 𝜈1∙ 

𝑎2(∆2
′ ) 𝜈21 𝜈22 …….. 𝜈2𝑘 𝜈2∙ 

. . . …….. . . 

. . . …….. . . 

𝑎𝑠(∆𝑠
′ ) 𝜈𝑠1 𝜈𝑠2 …….. 𝜈𝑠𝑘 𝜈𝑠∙ 

 𝜈∙𝑗 =∑𝜈𝑖𝑗

𝑠

𝑖=1

 
𝜈∙1 𝜈∙2 …….. 𝜈∙𝑘 

∑𝜈𝑖∙

𝑠

𝑖=1

=∑𝜈∙𝑗 = 𝑛

𝑘

𝑗=1

 

 

Նշանակենք՝ 
 

𝑝𝑖𝑗 = P(𝑋 = 𝑎𝑖,   𝑌 = 𝑏𝑗) (կամ  𝑝𝑖𝑗 = P(𝑋 ∈ ∆𝑖
′,   𝑌 ∈ ∆𝑗

′′)), 

𝑝𝑖∙ = P(𝑋 = 𝑎𝑖)(կամ  𝑝𝑖∙ = P(𝑋 ∈ ∆𝑖
′)),  

  𝑝∙𝑗 = P(𝑌 = 𝑏𝑗) (
 

կամ 𝑝∙𝑗 = P(𝑌 ∈ ∆𝑗
′′)): 
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Պարզ է ,որ  𝑝𝑖∙ = ∑𝑝𝑖𝑗  ,

𝑘

𝑗=1

 𝑝∙𝑗 =∑𝑝𝑖𝑗:

𝑠

𝑖=1

 

       Օգտվելով այս նշանակումներից՝ անկախության ℍ0 վարկածը 

կներկայացվի 

ℍ0 : 𝑝𝑖𝑗 = 𝑝𝑖∙ ∙ 𝑝∙𝑗,                                               (10.28) 

 տեսքով, որտեղ 

∑𝑝𝑖∙ =∑𝑝∙𝑗 = 1

𝑘

𝑗=1

𝑠

𝑖=1

: 

 

Այստեղից հետևում է, որ ℍ0 վարկածը բավարարվելու դեպքում 𝑠𝑘 –

չափանի պատահական հաճախությունների 𝛎∗ = (𝜈11
∗ , … , 𝜈𝑠𝑘

∗ ) վեկտորն 

ունի  𝕄(𝑛; 𝐩)  բազմանդամային  բաշխում,  որտեղ   𝐩 =  (𝑝𝑖𝑗 = 𝑝𝑖∙𝑝∙𝑗,    𝑖 =

  = 1,… , 𝑠 , 𝑗 = 1,… , 𝑘):  

Քանի որ 

  ∑𝑝𝑖∙ =

𝑠

𝑖=1

∑𝑝∙𝑗 = 1,

𝑘

𝑗=1

 

ապա  p  վեկտորը որոշվում է (𝑝1∙, … 𝑝(𝑠−1)∙, 𝑝∙1, … , 𝑝∙(𝑘−1)) պարամետրե-

րով (պարամետրերի թիվը  𝑟 = 𝑠 + 𝑘 − 2):  

Այժմ գնահատենք 𝐩 պարամետրը:  

        Լեմմա 3: ℍ0 վարկածը բավարարվելու դեպքում  𝑝𝑖𝑗 պարամետրերի 

𝑝̃𝑖𝑗 բազմանդամային ՃՄ գնահատականները հավասար են 
 

𝑝̃𝑖𝑗 =
1

𝑛2
 𝜈𝑖∙𝜈∙𝑗 ,   𝑖 = 1,… , 𝑠 ,   𝑗 = 1,… , 𝑘: 

Ա պ ա ց ու ց ու մ: 𝛎∗ = (𝜈11
∗ , … ,   𝜈𝑠𝑘

∗ ) ~ 𝕄(𝑛; 𝐩) վեկտորի ճշմարտա-

նմանության  ֆունկցիան ℍ0 վարկածը բավարարվելու դեպքում կլինի 

հավասար`  

𝑝(𝛎) = P(𝛎∗ = 𝛎) = P(𝜈11
∗ = 𝜈11, … , 𝜈𝑠𝑘

∗ = 𝜈𝑠𝑘  ) =
(𝑠𝑘)!

𝜈11!… 𝜈𝑠𝑘!
 ∏∏(𝑝𝑖𝑗)

𝜈𝑖𝑗 =

𝑘

 𝑗=1

𝑠

𝑖=1
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=
(𝑠𝑘)!

𝜈11! … 𝜈𝑠𝑘!
 ∏(𝑝𝑖∙)

𝜈𝑖∙∏(𝑝∙𝑗)
𝜈∙𝑗

𝑘

𝑗=1

𝑠

𝑖=1

,    𝝂 = (𝜈11, … 𝜈𝑠𝑘): 

Բազմանդամային լոգարիթմական ճշմարտանմանության ֆունկ-

ցիայի համար կստանանք`  

𝐿𝐩(𝛎) = ln 𝑝(𝛎) = ln 
(𝑠𝑘)!

𝜈11! … 𝜈𝑠𝑘!
 + ∑𝜈𝑖∙ ln 𝑝𝑖∙ +

𝑠

𝑖=1

∑𝜈∙𝑗 ln 𝑝∙𝑗 :

𝑘

 𝑗=1

 

Այժմ կազմենք լագրանժիանը՝ 

𝐻(𝑝𝑖∙, 𝑝∙𝑗; 𝜆1, 𝜆2) = 𝐿𝐩(𝛎) − 𝜆1 (∑𝑝𝑖∙ − 1

𝑠

𝑖=1

) − 𝜆2(∑𝑝∙𝑗 − 1

𝑘

𝑗=1

): 

 

Էքստրեմումի անհրաժեշտ պայմանները հանգեցնում են հետևյալ համա-

կարգին՝  
 

{
 
 
 
 
 

 
 
 
 
 
𝜕𝐻

𝜕𝑝𝑖∙
=
𝜈𝑖∙
𝑝𝑖∙
− 𝜆1 = 0, 𝑖 = 1,… , 𝑠,

𝜕𝐻

𝜕𝑝∙𝑗
=
𝜈∙𝑗

𝑝∙𝑗
− 𝜆2 = 0, 𝑗 = 1,… , 𝑘,

𝜕𝐻

𝜕𝜆1
=∑𝑝𝑖∙ − 1 = 0,

𝑠

𝑖=1

                  

𝜕𝐻

𝜕𝜆2
=∑𝑝∙𝑗 − 1 = 0,

𝑘

𝑗=1

                 

  

որտեղից՝ 

𝑝𝑖∙ =
𝜈𝑖∙
𝜆1
 ,   𝑝∙𝑗 =

𝜈∙𝑗

𝜆2
 ,   ∑𝑝𝑖∙ = 1,

𝑠

𝑖=1

  ∑𝑝∙𝑗 = 1,

𝑘

𝑗=1

 

ուստի 

∑
𝜈𝑖∙
𝜆1
= 1 ⇒  𝜆̃1 =

𝑠

𝑖=1

∑𝜈𝑖∙ = 𝑛  և  𝑝̃𝑖∙ =
𝜈𝑖∙
𝑛
 ,

𝑠

𝑖=1

 

 

∑
𝜈∙𝑗

𝜆2

𝑘

𝑗=1

= 1 ⇒  𝜆̃2 = ∑ 𝜈∙𝑗 = 𝑛  և  𝑝̃∙𝑗 =
𝜈∙𝑗

𝑛
∶ 

𝑘

 𝑗=1
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Այստեղից կստանանք` 

𝑝̃𝑖𝑗 = 𝑝̃𝑖∙𝑝̃∙𝑗 =
1

𝑛2
 𝜈𝑖∙𝜈∙𝑗 ∶        ∎ 

 

       ℍ0 վարկածը ստուգելու համար կազմենք Պիրսոնի 𝝌𝟐 վիճականին՝ 
 

 𝜒̂𝑛
2(𝐩̃) =∑∑

(𝜈𝑖𝑗 − 𝑛𝑝̃𝑖𝑗)
2

𝑛𝑝̃𝑖𝑗

𝑘

 𝑗=1

𝑠

𝑖=1

=∑∑
(𝜈𝑖𝑗 −

𝜈𝑖∙𝜈∙𝑗
𝑛
)
2

𝜈𝑖∙𝜈∙𝑗
𝑛

𝑘

 𝑗=1

𝑠

𝑖=1

= 

 

= 𝑛(∑∑
𝜈𝑖𝑗

2

𝜈𝑖∙𝜈∙𝑗
− 1

𝑘

 𝑗=1

𝑠

𝑖=1

):                                                         (10.29) 

 

Համաձայն 10.2 Ֆիշերի թեորեմի՝ ℍ0 վարկածը բավարարվելու դեպքում 

ճիշտ է  

 𝜒̂𝑛
2(𝐩̃)  

𝑑
→ ℍ2(𝑁 − 𝑟 − 1),    𝑛 → ∞ 

 

 

զուգամիտությունը, որտեղ  𝑁 = 𝑠𝑘,  𝑟 = 𝑠 + 𝑘 − 2, այնպես որ՝  

𝑁 − 𝑟 − 1 = 𝑠𝑘 − (𝑠 + 𝑘 − 2) − 1 = (𝑠 − 1)(𝑘 − 1): 

Այսպիսով, 𝛼 նշանակալիության մակարդակով (10.28) վարկածը ստու-

գող ասիմպտոտիկ կրիտիկական տիրույթը կունենա հետևյալ տեսքը՝ 
 

𝒳1𝛼 = {(𝐱, 𝐲)𝑛 ∶  𝜒𝑛
2(𝐩̃) ≥ 𝜒𝛼

2((𝑠 − 1)(𝑘 − 1))}: 
 

Դիտողություն 10.12: Կարելի է ցույց տալ (տե՛ս խնդիր 10.11-ը), որ 

𝑠 = 𝑘 = 2  դեպքում 𝜒𝑛
2(𝑝̃) վիճականին կներկայացվի հետևյալ ձևով՝  

 𝜒̂𝑛
2(𝐩̃) = 𝑛 (

𝜈11
𝜈∙1
 −  
𝜈12
𝜈∙2
)
2

 
𝜈∙1𝜈∙2
𝜈1∙𝜈2∙

= 𝑛 
(𝜈11𝜈22 − 𝜈12𝜈21)

2

𝜈1∙𝜈2∙𝜈∙1𝜈∙2
=

= 𝑛3
(𝜈11 − 

𝜈1∙𝜈∙1
𝑛 )

2

𝜈1∙𝜈2∙𝜈∙1𝜈∙2
                                                               (10.30): 

Օրինակ 10.9: Փորձի ընթացքում յուրաքանչյուր անձ դասակարգվել է 

ըստ երկու հատկանիշի՝ աչքերի և մազերի գույնի: Ըստ առաջին՝ 𝑋1 հատ-

կանիշի՝ անձը կարող է պատկանել a1, a2 կամ a3 խմբերից մեկին, իսկ  
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ըստ երկրորդ՝ 𝑋2 հատկանիշի՝ b1, b2, b3 կամ b4 խմբերից մեկին: 6800 

անձի երկու հատկանիշի զուգակցության աղյուսակն ունի հետևյալ 

տեսքը՝ 

 

Աչքերի  Մազերի գույնը   

գույնը 𝑏1 𝑏2 𝑏3 𝑏4 Σ 

𝑎1 1768 807 189 47 2811 

𝑎2 946 1387 746 53 3132 

𝑎3 115 438 288 16 857 

Σ 2829 2632 1223 116 6800 
 

 0.05 նշանակալիության մակարդակով ստուգենք 𝑋1 և 𝑋2 հատկանիշ-

ների անկախության վերաբերյալ վարկածը: 
 

 Համաձայն (10.29) բանաձևի՝ 𝜒2 վիճականին ներկայացվում է 

𝜒𝑛
2(𝐩̃) = 𝑛(∑∑

𝜈𝑖𝑗
2

𝜈𝑖∙𝜈∙𝑗
− 1

𝑘

 𝑗=1

𝑠

𝑖=1

)  

 

տեսքով, որտեղ 𝑠 = 3, 𝑘 = 4, 𝑛 = 6800: Կատարելով հաշվարկները՝ 

կստանանք` 
 

𝜒𝑛
2(𝐩̃) ≈ 1074 > 12.592 = 𝜒0.05

2 (6) 
 

և անկախության վարկածը հերքվում  է:   

      

       § 10.3.2.  Սպիռմենի հայտանիշ 

 

Կիրառություններում, երբ պետք է լինում ստուգել որակական հատ-

կանիշների անկախությունը, հաճախ օգտագործվում են ռանգային հայ-

տանիշները, որոնցից առավել հայտնի է Սպիռմենի հայտանիշը:  

        Դիցուք  տրված  է  𝑋 և 𝑌  պատահական  մեծությունների  երկչափ  

(𝐗, 𝐘)𝑛 = ((𝑋1, 𝑌1), … , (𝑋𝑛, 𝑌𝑛)) նմուշը: Նշանակենք 𝑅𝑖-ով 𝑋𝑖 անդամների 

ռանգերը 𝐗𝑛 նմուշում, 𝑆𝑖-ով՝ 𝑌𝑖 անդամների ռանգերը 𝐘𝑛 նմուշում:
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       Այնուհետև վերադասավորենք ռանգերի (𝑅𝑖,  𝑆𝑖), 𝑖 = 1,… , 𝑛 զույգերն 

ըստ 𝑅𝑖 ռանգերի աճման կարգի՝ նշանակելով (1,  𝑇1), (2,  𝑇2),… , (𝑛,  𝑇𝑛)-ով 

ստացված զույգերը (𝑅𝑖 ∶= 𝑖):  
 

 Սպիռմենի ռանգային կորելյացիայի գործակից (Spearman`s 𝝆 

coefficient) կամ Սպիռմենի վիճականի կոչվում է 𝑅1, …, 𝑅𝑛 և 𝑆1, …, 𝑆𝑛 

ռանգերի միջև կորելյացիայի գործակիցը՝ 
 

 𝑟𝑆
∗ =∑(𝑅𝑖 − 𝐑

 ̅)(𝑆𝑖 − 𝐒
 ̅)

𝑛

𝑖=1

√∑(𝑅𝑖 − 𝐑
 ̅)2∑(𝑆𝑖 − 𝐒 ̅)

2

𝑛

𝑖=1

𝑛

𝑖=1

∶       (10.31) ⁄  

Դիտողություն 10.13: Քանի որ 𝐑 = (𝑅1, … , 𝑅𝑛) և 𝐒 = (𝑆1, … , 𝑆𝑛) ռան-

գերը ներկայացնում են 1,… , 𝑛 թվերի որոշ տեղափոխություններ, ապա 

հեշտ է տեսնել, որ 

𝐑 ̅ = 𝐒  ̅ =
1

𝑛
 ∑𝑖

𝑛

𝑖=1

=
𝑛 + 1

2
 ,   ∑(𝑅𝑖 − 𝐑

 ̅)2 =

𝑛

𝑖=1

∑(𝑆𝑖 − 𝐒
 ̅)2

𝑛

𝑖=1

= 

=∑𝑖2
𝑛

𝑖=1

− 𝑛 (
𝑛 + 1

2
)
2

=
𝑛(𝑛2 − 1)

12
∶ 

Այսպիսով,  𝑟𝑆
∗ գործակիցը կբերվի հետևյալ տեսքի՝  

 𝑟𝑆
∗ =

12

𝑛(𝑛2 − 1)
 ∑(𝑖 −

𝑛 + 1

2
) (𝑇𝑖 −

𝑛 + 1

2
) ∶

𝑛

𝑖=1

  

Դիտողություն 10.14: 𝑟𝑆
∗ վիճականին կարելի է ներկայացնել նաև 

հետևյալ ձևով (տե՛ս խնդիր 10.12-ը)՝ 

 𝑟𝑆
∗ = 1 − 

6

𝑛(𝑛2 − 1)
 ∑(𝑅𝑖 − 𝑆𝑖)

2 = 1 − 

𝑛

𝑖=1

6

𝑛(𝑛2 − 1)
 ∑(𝑖 − 𝑇𝑖)

2 ∶  (10.32)

𝑛

𝑖=1

 

Դիցուք տեղի ունի անկախության ℍ0 ∶  F𝐙(𝑥, 𝑦) ≡ F𝑋(𝑥) ∙ F𝑌(𝑦) վար-

կածը: Այդ դեպքում (տե՛ս խնդիր 10.13-ը)՝ 

E(𝑇𝑖) =
𝑛 + 1

2
 ,   E(𝑟𝑆

∗) = 0,   var(𝑟𝑆
∗) =

1

𝑛 − 1
∶ 
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Դիտողություն 10.15: (10.32) բանաձևից անմիջապես երևում է, որ 

𝑅𝑖 = 𝑆𝑖 , 𝑖 = 1, …, 𝑛  դեպքում 𝑟𝑆
∗ = 1, իսկ 𝑇𝑖 = 𝑛 − 𝑖 + 1-ի դեպքում (հակա-

դիր ռանգեր) ՝ 𝑟𝑆
∗ = − 1: Ընդհանուր դեպքում` |𝑟𝑆

∗| ≤ 1: |𝑟𝑆
∗|-ի մեկին մոտ 

ընդունած արժեքները վկայում են, որ ℍ0 անկախության վարկածը տեղի 

չունի: 

Դիտողություն 10.16: 𝑟𝑆
∗ վիճականու ճշգրիտ բաշխումը ℍ0 վարկածը 

բավարարվելու դեպքում ոչ պարամետրական է (բաշխումից «ազատ») և 

համաչափ 0 կետի նկատմամբ: 𝛼 նշանակալիության մակադակով այդ 

վարկածը ստուգող Սպիռմենի հայտանիշի երկկողմանի կրիտիկական 

տիրույթն ունի հետևյալ տեսքը՝ 

𝒳1𝛼 = {(𝐱, 𝐲)𝑛 ∶  |𝑟𝑆| ≥ 𝑠𝛼 2⁄ (𝑛)}, 

որտեղ 𝑠𝛼 2⁄ (𝑛)-ը 𝑟𝑆
∗ վիճականու բաշխման 𝛼 2⁄  մակարդակով կրիտիկա-

կան եզրն է, որի արժեքները, երբ 𝑛 = 4, …, 30, բերված են աղյուսակ Ա 13-

ում:  

Տեղի ունեն հետևյալ թեորեմներ, որոնք կիրառվում են ℍ0 վարկածը 

ստուգելու համար մեծ 𝒏-երի դեպքում (տե՛ս Кендалл, Стьюарт [6])՝ 

        Թեորեմ 10.10:  ℍ0 վարկածը բավարարվելու դեպքում ճիշտ է  
 

√𝑛 − 1 𝑟𝑆
∗  
𝑑
→  ℕ(0,1),   𝑛 → ∞  

 

զուգամիտությունը: 

 

       Թեորեմ 10.11: Դիցուք ճիշտ է ℍ0 վարկածը: Այդ դեպքում տեղի ունի 

հետևյալ զուգամիտությունը՝  

 

√
𝑛 − 2

1 − (𝑟𝑆
∗)2
  𝑟𝑆
∗ 
𝑑
→  𝕋(𝑛 − 2),   𝑛 → ∞: 

Թեորեմ 10.11-ում նշված զուգամիտությունը բավականաչափ «արագ» 

է, այնպես որ համապատասխան հայտանիշը կարելի է կիրառել արդեն, 

երբ 𝑛 ≥ 10: 
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 Դիտողություն 10.17: 10.10 և 10.11 թեորեմներից բխում է, որ 𝛼 մա-

կարդակով ասիմպտոտիկ կրիտիկական տիրույթներն ունեն համապա-

տասխանաբար հետևյալ տեսքը՝ 

 

𝒳1𝛼 = {(𝐱, 𝐲)𝑛 ∶  √𝑛 − 1 |𝑟𝑆| ≥ 𝑧𝛼 2⁄ } , 
 

 

𝒳1𝛼 = {(𝐱, 𝐲)𝑛 ∶  √
𝑛 − 2

1 − 𝑟𝑆
2
 |𝑟𝑆| ≥ 𝑡𝛼 2⁄ (𝑛 − 2)} 

 

       Օրինակ 10.10: Երկու դասախոս (100 բալային համակարգով) գնահա-

տել են նույն առարկայից 12 ուսանողի գիտելիքը: Արդյունքում ստացվել 

են հետևյալ տվյալներ՝ 

 

(10.33) 

 0.01 նշանակալիության մակարդակով ստուգենք այդ գնահատա-

կանների միջև անկախության վերաբերյալ վարկածը: 
 

Կառուցենք վարիացիոն շարքերը՝ թվանշանները դասավորելով 

նվազման կարգով` 
 

 

(10.34) 

 

Գտնենք այդ վարիացիոն շարքերում (10.33)-ում բերված գնահատա-

կանների համապատասխան ռանգերը՝  

 

Ուսանողներ  1 2 3 4 5 6 7 8 9 10 11 12 

I -ին 

դասախոս 

 

46 

 

65 

 

93 

 

74 

 

85 

 

95 

 

77 

 

42 

 

81 

 

91 

 

55 

 

67 

 II –րդ 

դասախոս 

 

40 

 

61 

 

95 

 

71 

 

79 

 

98 

 

88 

 

45 

 

75 

 

94 

 

60 

 

72 

  1 2 3 4 5 6 7 8 9 10 11 12 

I -ին 

դասախոս 

 

95 

 

93 

 

91 

 

85 

 

 81  

 

77 

 

74 

 

67 

 

65 

 

55 

 

46 

 

42 

II -րդ 

դասախոս 

 

98 

 

95  

 

94 

 

88 

 

79 

 

75 

 

72 

 

71 

 

61 

 

60 

 

45 

 

40 
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(10.35) 

       Օրինակ, 𝑅1
1  = 11 ռանգը համապատասխանում է (10.33)-ում բերված 

I-ին դասախոսի 1-ին ուսանողի 46 բալին, որը համապատասխանում է 

(10.34) վարիացիոն շարքերում I-ին դասախոսին համապատասխանող 

11-րդ տեղին:  

       Այժմ հաշվենք Սպիռմենի ռանգային կորելյացիայի գործակիցը՝ 

𝑟𝑆 = 1 −
6

𝑛(𝑛2 − 1)
 ∑(𝑅𝑖

1 − 𝑅𝑖
2)
2
=

𝑛

𝑖=1

1 −
6

12 ∙ 143
∙ 10 ≈ 0.965: 

Աղյուսակ Ա 13 -ից ստանում ենք, որ 𝑠𝛼 2⁄ (𝑛) = 𝑠0.005(12) = 0.7273: 

Հետևաբար՝ 𝑟𝑆 > 𝑠𝛼 2⁄ (𝑛), որտեղից եզրակացնում ենք, որ գնահատական-

ների միջև առկա է նշանակալի ռանգային կորելյացիոն կապ, և անկա-

խության ℍ0 վարկածը հերքվում է:  

          Նույն եզրակացության կարելի է հանգել, եթե օգտվենք թեորեմ 10.11 -

ից: Իրոք, ունենք՝ 

√
𝑛 − 2

1 − 𝑟𝑆
2
 |𝑟𝑆| = √

10

0.0688
∙ 0.965 ≈ 11.634 , 

և քանի որ  𝑡0.005(10) = 3.169, ապա ℍ0 վարկածը կրկին հերքվում է:  

Դիտողություն 10.18: Դիցուք հատկանիշներն ունեն համընկնող 

ռանգեր: Այդ դեպքում ռանգային կորելյացիայի գործակիցը հաշվարկվում 

է հետևյալ բանաձևի օգնությամբ (տե՛ս Gibbons, Chakraborti [19])` 

 𝑟𝑆 =

1
6
(𝑛3 − 𝑛) − ∑(𝑅𝑖

1 − 𝑅𝑖
2)
2
− 𝑇1 − 𝑇2

√1
6
(𝑛3 − 𝑛) − 2𝑇1 √

1
6
(𝑛3 − 𝑛) − 2𝑇2

 ,                     (10.36) 

  1 2 3 4 5 6 7 8 9 10 11 12 

𝑅1 11 9 2 7 4 1 6 12 5 3 10 8 

𝑅2 12 9 2 8 5 1 4 11 6 3 10 7 

(𝑅1 − 𝑅2)2 1 0 0 1 1 0 4 1 1 0 0 1 
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𝑇1  =
1

12
∑(𝑛1𝑖

3 − 𝑛1𝑖)

𝑚1

𝑖=1

,   𝑇2  =
1

12
∑(𝑛2𝑖

3 − 𝑛2𝑖)

𝑚2

𝑖=1

,   𝑚1­ը և 𝑚2­ը I ­ին և II­րդ 

հատկանիշների համընկնող ռանգերի խմբերի թվերն են, 𝑛1𝑖-ն և 𝑛2𝑖-ն՝ 

I­ին և II­րդ հատկանիշների 𝑖-րդ խմբի ռանգերի կրկնությունների թվերը: 

Օրինակ 10.11: Ստորև բերված են համակարգիչներով հագեցվածու-

թյան և աշխատանքի արդյունավետության վերաբերյալ 12 միատեսակ 

կազմակերպությունների ռանգերը ՝ 

Կազմակերպություններ 1 2 3 4 5 6 7 8 9 10 11 12 

Հագեցվածությունը  

համակարգիչներով(𝑅𝑖
1) 

 

1 

 

2 

 

3.5 

 

3.5 

 

6 

 

6 

 

6 

 

8.5 

 

8.5 

 

10 

 

11 

 

12 

Արդյունավետությունը 

(𝑅𝑖
2) 

 

2 

 

4 

 

1 

 

6 

 

3 

 

6 

 

9.5 

 

9.5 

 

12 

 

8 

 

11 

 

6 
 

       0.05 նշանակալիության մակարդակով ստուգենք ℍ0 վարկածը, որ 

համակարգիչներով հագեցվածությունը չի ազդում այդ կազմակերպու-

թյունների աշխատանքի արդյունավետության վրա, ընդդեմ ℍ1 

երկընտրանքային այն վարկածի, որ այդ հատկանիշների միջև կա 

դրական կորելյացիոն կապ: 

Ըստ համակարգչային հագեցվածության գործոնի՝ կստանանք` 

𝑚1 = 3,  𝑛11 = 𝑛12 = 2,  𝑛13 = 3,  

որտեղից՝  𝑇1 = 
1

12
 (2 ∙ (23 − 2) + (33 − 3)) = 3: 

 

Ըստ արդյունավետության գործոնի՝ 

𝑚2 = 2,  𝑛21 = 2,  𝑛22 = 3, որտեղից՝ 𝑇2 = 
1

12
 ((23 − 2) + (33 − 3)) = 2.5: 

Մյուս կողմից՝  

∑(𝑅𝑖
1 − 𝑅𝑖

2)
2
= (−1)2 + (−2)2 + 2.52 + (−2.5)2 + 32 + 0 + (−3.5)2

12

𝑖=1

+ (−1)2 +(−3.5)2 + 22 + 0 + 62 = 92: 
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Այսպիսով, (10.36) բանաձևից կստանանք` 

𝑟𝑆 =

1
6
(123 − 12) − 92 − 3 − 2.5

√1
6
(123 − 12) − 2 ∙ 3 √

1
6
(123 − 12) − 2 ∙ 2.5

≈ 0.672 ∶ 

Այժմ, ըստ թեորեմ 10.11–ի, միակողմանի կրիտիկական տիրույթը կլինի` 

𝒳1𝛼 = {(𝒙, 𝒚)𝑛 ∶  √
𝑛 − 2

1 − 𝑟𝑆
2
 ∙ 𝑟𝑆 ≥ 𝑡𝛼(𝑛 − 2)}: 

 

Այստեղից՝ 

 √
10

1 − 0.6722
 ∙ 0.672 ≈ 2.87 > 𝑡0.05(10) = 1.812 , 

և  ℍ0 վարկածը հերքվում է հօգուտ ℍ1 վարկածի:  

 

       § 10.3.3.  Քենդալի հայտանիշ 

  

Հաջորդ հայտնի ռանգային հայտանիշն առաջարկել է Քենդալը [6]: 
 

Դիցուք (1,  𝑇1), (2,  𝑇2), … , (𝑛,  𝑇𝑛)-ը 𝐗𝑛 և 𝐘𝑛 նմուշներին համապա-

տասխանող ռանգերի զույգերն են: 
 

𝑸 վիճականի կոչվում է 𝑄 = ∑ 𝑇𝑖
′𝑛

𝑖=1  պատահական մեծությունը, 

որտեղ 𝑇𝑖
′,  𝑇𝑖 ռանգին համապատասխանող «ինվերսիան» է, այսինքն՝ 

( 𝑇1, … ,  𝑇𝑛 ) շարքում 𝑇𝑖-ից աջ գտնվող այն ռանգերի թիվը, որը 𝑇𝑖 արժեքից 

փոքր է: 

𝑸 վիճականին նկարագրում է  𝑇𝑖 ռանգերի «ինվերսիաների»  

 («անկարգավորվածությունների») թիվը: Պարզ է, որ 0 ≤ 𝑄 ≤
𝑛(𝑛−1)

2
, ընդ 

որում՝ 𝑄 = 0 դեպքը վկայում է «անկարգավորվածությունների» բացակա-

յության մասին, այսինքն՝ 𝑇1 < 𝑇2 < …< 𝑇𝑛: Եվ ընդհակառակն՝ 𝑄 =
𝑛(𝑛−1)

2
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դեպքը համապատասխանում է 𝑇𝑛 < 𝑇𝑛−1 < …< 𝑇1 հակառակ դասա-

վորությանը:  

Քենդալի ռանգային կորելյացիայի գործակից (Kendall`s 𝝉 coefficient) 

կոչվում է  

𝑟𝐾
∗ = 1 −

4𝑄

𝑛(𝑛 − 1)
 

 

վիճականին: 𝑟𝐾 = 1, եթե 𝑄 = 0,  և 𝑟𝐾 = −1, երբ 𝑄 =
𝑛(𝑛−1)

2
 : Ընդհանուր 

դեպքում՝ |𝑟𝐾| ≤ 1: Հայտնի է (տե՛ս Кендалл, Стьюарт [6]), որ ℍ0 ∶

 F𝐙(𝑥, 𝑦) ≡ F𝑋(𝑥) ∙ F𝑌(𝑦) ( 𝐙 = (𝑋, 𝑌)) անկախության վարկածը բավարար-

վելու դեպքում՝ 

E(𝑟𝐾
∗) 
 =  0,   var(𝑟𝐾

∗) =
2(2n + 5)

9n(n − 1)
∶ 

Դիտողություն 10.19: 𝑟𝐾
∗ վիճականու ճշգրիտ բաշխումը ℍ0 վարկածը  

բավարարվելու դեպքում ոչ պարամետրական է (բաշխումից «ազատ») և 

համաչափ 0 կետի նկատմամբ: 𝛼 նշանակալիության մակադակով այդ 

վարկածը ստուգող Քենդալի հայտանիշի երկկողմանի կրիտիկական 

տիրույթն ունի հետևյալ տեսքը՝ 

𝒳1𝛼 = {(𝐱, 𝐲)𝑛 ∶  |𝑟𝐾| ≥ 𝑘𝛼 2⁄ (𝑛)}, 

որտեղ 𝑘𝛼 2⁄ (𝑛)-ը 𝑟𝐾
∗ վիճականու ճշգրիտ բաշխման 𝛼 2⁄  մակարդակով 

կրիտիկական եզրն է, որի արժեքները, երբ 𝑛 = 4, …, 10, բերված են 

աղյուսակ Ա 14-ում:  

Տեղի ունի հետևյալ սահմանային հատկությունը (տե՛ս Кендалл, 

Стьюарт [6])` 

        Թեորեմ 10.12 (Քենդալ ): ℍ0 վարկածի դեպքում ճիշտ է  
 

 

√
9n(n − 1)

2(2n + 5)
 𝑟𝐾
∗  
𝑑
→  ℕ(0,1),   𝑛 → ∞  

զուգամիտությունը: 
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ℍ0 վարկածը ստուգող 𝛼 մակարդակով երկկողմանի ասիմպտոտիկ 

հայտանիշը կունենա հետևյալ կրիտիկական տիրույթը՝ 

𝒳𝟏𝜶 = {(𝐱, 𝐲)𝑛 ∶  √
9n(n − 1)

2(2n + 5)
 |𝑟𝐾| ≥ 𝑧𝛼 2⁄  }: 

Օրինակ 10.12: Գեղեցկության մրցույթին մասնակցել են 10 օրիորդ:  

Մասնակիցների գրաված տեղերը, ըստ ժյուրիի և հանդիսատեսի 

կարծիքների, բերված են հետևյալ աղյուսակում՝ 

 

Մասնակիցներ 1 2 3 4 5 6 7 8 9 10 

Հանդիսատեսի 

սահմանած տեղերը 

 

10 

 

7 

 

8 

 

2 

 

5 

 

1 

 

6 

 

3 

 

9 

 

4 

Ժյուրիի սահմանած 

տեղերը 

 

8 

 

2 

 

9 

 

6 

 

4 

 

5 

 

3 

 

7 

 

10 

 

1 
 

       0.05 նշանակալիության մակարդակով ստուգել ժյուրիի անդամների և 

հանդիսատեսների կարծիքների միջև անկախության վերաբերյալ ℍ0 

վարկածն ընդդեմ կարծիքների միջև դրական կորելյացիա ունենալու ℍ1 

երկընտրանքային վարկածի:  

Վերադասավորենք հանդիսատեսի կողմից տրված տեղերն ըստ 

աճման կարգի և գտնենք ժյուրիի կողմից տրված տեղերի «ինվերսիա-

ները»՝ 
 

 

Մասնակիցներ 6 4 8 10 5 7 2 3 9 1 

Հանդիսատեսի 

տված տեղերը 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

 

10 

Ժյուրիի տված 

տեղերը ( 𝑇𝑖  ) 

 

5 

 

6 

 

7 

 

1 

 

4 

 

3 

 

2 

 

9 

 

10 

 

8 

Ինվերսիաների 

թիվը ( 𝑇𝑖
′ ) 

 

4 

 

4 

 

4 

 

0 

 

2 

 

1 

 

0 

 

1 

 

1 

 

0 
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Օրինակ, ժյուրիի անդամների կողմից տրված 𝑇1 = 5-րդ տեղին հա-

մապատասխանող 𝑇1
′ «ինվերսիան» կլինի հավասար 4-ի, քանի որ 𝑇𝑖 ռան-

գերի շարքում 𝑇1 = 5 արժեքից փոքր, աջ կողմում` ընկած են 1, 4, 3, 2 

ռանգերը: 

Այժմ հաշվենք «ինվերսիաների» ընդհանուր թիվը (𝑸 վիճականու 

արժեքը)` 

𝑄 =∑𝑇𝑖
′

𝑛

𝑖=1

= 17: 

 

 

Այսպիսով, Քենդալի ռանգային կորելյացիայի գործակիցը կլինի` 
 

𝑟𝐾 = 1 −
4𝑄

𝑛(𝑛 − 1)
= 1 −

4 ∙ 17

10 ∙ 9
 ≈ 0.244: 

Այստեղից՝ քանի որ 𝑘0.025(10) = 0.551 (տե՛ս աղյուսակ Ա 14. ­ը), 

ապա 𝑟𝐾 < 𝑘𝛼 2⁄ (𝑛) և անկախության ℍ0 վարկածը չի հերքվում:   

 

  

       Խնդիրներ 

 

10.11. Ապացուցել, որ 𝑋 և 𝑌 պատահական մեծությունների անկա-

խությունը ստուգող (10.29) վիճականին 𝑠 = 𝑘 = 2 դեպքում ունի (10.30) 

համարժեք ներկայացումները: 
 

10.12. Ցույց տալ, որ Սպիռմենի ռանգային կորելյացիայի  𝑟𝑆
∗ գործա-

կիցը ներկայացվում է (10.32) տեսքով: 
 

10.13. Գտնել անկախության ℍ0 վարկածը բավարարվելու դեպքում 

Սպիռմենի ռանգային կորելյացիայի  𝑟𝑆
∗ գործակցի E(𝑟𝑆

∗) միջինը և var(𝑟𝑆
∗) 

ցրվածքը:  
 

Պատասխան՝  E(𝑟𝑆
∗) = 0,  var(𝑟𝑆

∗) =
1

𝑛−1
 : 
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       § 10.4.  Պատահականության հայտանիշ   

  

Որոշ դեպքերում վիճակագրական խնդիրներ լուծելիս հարկ է լինում 

ստուգել վարկած, որ փորձի ընթացքում ստացված 𝐗 = (𝑋1, … , 𝑋𝑛) 

դիտումների վեկտորը որոշակի P բաշխմանը համապատասխանող 

պատահական նմուշ է, այսինքն՝ որ X վեկտորի 𝑋𝑖 անդամներն անկախ և 

միատեսակ բաշխված պատահական մեծություններ են: Դա նշանակում 

է, որ պահանջվում է ստուգել  

ℍ0 : F𝐗 (𝐱) = F(𝑥1) . . . F(𝑥𝑛), 𝐱 = (𝑥1, … , 𝑥𝑛) ∈ 𝒳
𝑛 

վարկածը, որտեղ F(𝑥)-ը P բաշխմանը համապատասխանող բաշխման 

ֆունկցիան է: 

ℍ0 վարկածը ստուգելու համար օգտվենք այն պայմանից, որ  

պատահականության վարկածը բավարարվելու դեպքում 𝐗  վեկտորի 𝑋𝑖 

անդամները պետք է լինեն «հավասարահնարավոր», այսինքն՝ ոչ մի 

իմաստով կարգավորված չլինեն: Հետևաբար՝ ℍ0 վարկածը բնութա-

գրվում  է  «լիովին  անկարգավորվածությամբ»:  Դա  նշանակում  է, որ  ℍ0 

վարկածի    ստուգումը    պետք   է   կառուցել    «անկարգավորվածության» 

աստիճանը նկարագրող վիճականիների օգնությամբ: Այդպիսի վիճակա-

նիներից մեկն է 𝐗  նմուշում «ինվերսիաների» 𝑄𝑛 թիվը: Հիշենք, որ 𝐗 = 

(𝑋1, …, 𝑋𝑖, …,𝑋𝑗, …, 𝑋𝑛 ) նմուշի 𝑋𝑖 և 𝑋𝑗 անդամները կազմում են 

«ինվերսիա», եթե 𝑖 < 𝑗 պայմանից հետևում է կարգային վիճականիների 

համար 𝑋(𝑖) > 𝑋(𝑗) պայմանը: 
 

Նշանակենք՝ 

  𝑄𝑛 = 𝑄(𝐗
 )  = ∑𝜂𝑖 ­ով  𝐗  նմուշի «ինվերսիաների» թիվը,

𝑛−1

𝑖=1

 

որտեղ 𝜂𝑖  ­ն  𝑋𝑖 նմուշային անդամին համապատասխանող «ինվերսիա-

ների» թիվն է: 𝑄𝑛 վիճականին նկարագրում է դիտումների «անկարգա-

վորվածությունների» չափը:  
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       Տեղի ունի հետևյալ արդյունքը (տե՛ս Кендалл, Стьюарт [6])՝ 

        Թեորեմ 10.13:  ℍ0 վարկածը բավարարվելու դեպքում ճիշտ է  
 

 𝑄̃𝑛 =
6

𝑛3 2⁄
 (𝑄𝑛 −

𝑛(𝑛 − 1)

4
)  

𝑑
→  ℕ(0, 1) ,   𝑛 → ∞ (10.37) 

 

զուգամիտությունը :  

 

ℍ0 վարկածը ստուգող 𝛼 նշանակալիության մակարդակով ասիմպտոտիկ 

կրիտիկական տիրույթը կունենա հետևյալ տեսքը՝ 

 

𝒳1𝛼 = {𝐱 ∶  |𝑄𝑛 −
𝑛(𝑛 − 1)

4
|
6

𝑛3 2⁄
 ≥  𝑧𝛼 2⁄ } ∶ 

 

(10.37) բանաձևում բերված զուգամիտությունը բավականաչափ «արագ» 

է, այնպես որ հայտանիշը կարելի է կիրառել, երբ  𝑛 ≥ 10-ից: 

Օրինակ 10.13: Վերցնենք [0,1] միջակայքում հավասարաչափ 

բաշխված «պատահական թվերի» Ա 6. աղյուսակի վերևի 6-րդ տողից 12 

հատ թիվ: 0.05 նշանակալիության մակարդով ստուգենք այդ թվերի 

պատահականության վերաբերյալ վարկածը:  

Վերցված թվերն են՝ 
 

0.3407 0.2768 0.5036 0.6973 0.6170 0.6581 0.3398 0.8556 0.4557 0.1824 

0.0635 0.3034:                                                       (10.38) 
 

Վերադասավորենք այդ թվերն աճման կարգով (կազմենք վարիացիոն 

շարքը)՝ 
 

0.0635 0.1824 0.2768 0.3034 0.3398 0.3407 0.4557 0.5036 0.6170 0.6581  

0.6973 0.8556:              (10.39) 

(10.38) «պատահական թվերի» հաջորդականության «ինվերսիաների» 

𝑄𝑛 թիվը հաշվելու համար գտնենք յուրաքանչյուր 𝑋𝑖 անդամի «ինվեր-

սիաների» 𝜂𝑖 թիվը: Օրինակ՝ 𝑋1 = 0.3407 նմուշային անդամը վարիացիոն 

շարքում գտնվում է 6-րդ տեղում՝ 𝑋(6) = 0.3407: Քանի որ (10.38) շարքում
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 0.3407 թվից աջ գտնվում են (10.39) վարիացիոն շարքի 𝑋(6) = 0.3407 թվի 

ձախ կողմում գտնվող բոլոր 5 թվերը, ուստի 𝜂1 = 5-ի: Նման ձևով գտնում 

ենք՝ 

𝜂2 = 2, 𝜂3 = 5, 𝜂4 = 7, 𝜂5 = 𝜂6 = 5, 𝜂7 = 3, 𝜂8 = 4, 𝜂9 = 3, 𝜂10 = 1, 𝜂11 = 0: 
 

Այսպիսով, «պատահական թվերի» հաջորդականության «ինվեր-

սիաների» թիվը կլինի՝ 

  𝑄12  = ∑𝜂𝑖

11

𝑖=1

 =  40:  

Այնպես որ՝ 

𝑄̃12 = (40 − 
12 ∙ 11

4
) ∙

6

123 2⁄
= 7 ∙

6

12√12
≈ 1.01: 

Հաշվի առնելով, որ 𝑧0.005 = 2.575, ունենք 𝑄̃12 = 1.01 <  2.575 = 𝑧0.005, 

և պատահականության վերաբերյալ ℍ0 վարկածը չի հերքվում:  

  

       Խնդիր 
 

     10.14.  Պատահականության  վարկածը  բավարարվելու  դեպքում  

𝑄𝑛 = ∑ 𝜂𝑖  
𝑛−1
𝑖=1   «ինվերսիաների»  թվի  համար  գտնել միջինը` E(𝑄𝑛) և 

ցրվածքը` var(𝑄𝑛): 
 

Ցուցում՝ նկատել, որ 𝜂1, …, 𝜂𝑛−1-ը անկախ պատահական մեծություններ են, 

և P(𝜂𝑖 = 𝑘) = 1 (𝑛 − 𝑖 + 1)⁄ ,  𝑘 = 0, …, 𝑛 − 𝑖 :  

Պատասխան՝  E(𝑄𝑛) =  
𝑛(𝑛−1)

4
 ,  var(𝑄𝑛) = 

𝑛(𝑛−1)(2𝑛+5)

72
 :  

 

       § 10.5.  Երկու պատահական մեծությունների միջև  

      կորելյացիոն կապը ստուգող հայտանիշ 

 

Դիցուք տրված են (𝑋, 𝑌) պատահական վեկտորը և դրան համապա-

տասխանող (𝐗, 𝐘)𝑛  =  ((𝑋1, 𝑌1), … , (𝑋𝑛, 𝑌𝑛)) նմուշը: 𝜌-ով նշանակենք այդ 

պատահական մեծությունների կորելյացիայի գործակիցը՝  



§ 10.5. Երկու պատահական մեծությունների միջև  
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𝜌 = 𝜌𝑋,𝑌 =
cov (𝑋, 𝑌) 

√var(𝑋) √var(𝑌)
 , 

իսկ 𝑟𝑋,𝑌-ով՝ նմուշային կորելյացիայի գործակիցը՝ 
 

𝑟𝑋,𝑌 = 
𝑆𝑋𝑌
2

𝑆𝑋𝑆𝑌
 ,  

որտեղ 

  𝑆𝑋𝑌
2  =  

1

𝑛
∑𝑋𝑖𝑌𝑖 − 𝐗̅ 𝐘

𝑛

𝑖=1

  

 

նմուշային կովարիացիան է, իսկ 𝑆𝑋­ը և 𝑆𝑌­ը` նմուշային ստանդարտ 

շեղումները: 

Կարելի է ցույց տալ (տե՛ս Крамер [8]), որ E(𝑟𝑋,𝑌) = 𝜌, var(𝑟𝑋,𝑌) = 𝑐
 𝜌2

4𝑛
 , 

որտեղ 𝑐-ն որոշակի հաստատուն է: Այս պայմաններից հետևում է, որ 

𝑟𝑋,𝑌
P
→𝜌, երբ 𝑛 → ∞:  

Սովորաբար պատահական նմուշի թվային իրագործումը դիսկրետ 

(𝑋, 𝑌) վեկտորի դեպքում ներկայացված է լինում (𝑎𝑖 , 𝑏𝑗), 𝑖 = 1,… , 𝑠, 

𝑗 = 1,… , 𝑘 զույգերի և համապատասխան 𝜈𝑖𝑗 հաճախությունների զուգակ-

ցության աղյուսակի միջոցով (տե՛ս § 10.3.1): Անընդհատ (𝑋, 𝑌) պատահա-

կան վեկտորի դեպքում (𝑎𝑖 , 𝑏𝑗) զույգերը 𝑋 և 𝑌 պատահական մեծություն-

ների արժեքների բազմության տրոհումներին համապատասխանող ∆𝑖
′ և 

∆𝑗
′′ միջակայքերի միջնակետերն են: 

 

Համապատասխան (թվային) նմուշային բնութագրիչները կլինեն` 

նմուշային միջինը և ցրվածքը` 

 

𝐱̅ =
1

𝑛
 ∑𝜈𝑖∙𝑎𝑖

𝒔

𝒊=𝟏

 ,  𝑠𝑥
2 =

1

𝑛
 ∑𝜈𝑖∙(𝑎𝑖 − 𝐱̅)

2  =  
1

𝑛
 ∑𝜈𝑖∙𝑎𝑖

2 − (𝐱̅)2 ,

𝑠

𝑖=1

𝑠

𝑖=1

 

 

 

𝐲̅ =
1

𝑛
 ∑𝜈∙𝑗𝑏𝑗

𝑘

𝒋=𝟏

 ,  𝑠𝑦
2 =

1

𝑛
 ∑𝜈∙𝑗(𝑏𝑗 − 𝐲̅)

2
=
1

𝑛
 ∑𝜈∙𝑗𝑏𝑗

2 − (𝐲̅)2 ,

𝑘

𝑗=1

𝑘

𝑗=1
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նմուշային կովորիացիան և կորելյացիայի գործակիցը` 
 

𝑠𝑥𝑦
2 =

1

𝑛
 ∑∑𝜈𝑖𝑗

𝑘

𝑗=1

𝑠

𝑖=1

𝑎𝑖𝑏𝑗 − 𝐱̅ 𝐲̅, 

 

𝑟𝑥,𝑦 =
𝑠𝑥𝑦
2

𝑠𝑥𝑠𝑦
=

= (∑∑𝜈𝑖𝑗

𝑘

𝑗=1

𝑠

𝑖=1

𝑎𝑖𝑏𝑗 − 𝑛𝐱̅𝐲̅) (√∑𝜈𝑖∙𝑎𝑖
2 − 𝑛(𝐱̅)2

𝑠

𝑖=1

)(√∑𝜈∙𝑗𝑏𝑗
2 − 𝑛(𝐲̅)2

𝑘

𝑗=1

)⁄ : (10.40) 

 

 

        Թեորեմ 10.14 (տե՛ս Крамер [8]): ℍ0 : 𝜌 = 0 վարկածը բավարարվելու 

դեպքում 

𝑇𝑛−2 = √𝑛 − 2 
𝑟𝑋,𝑌

√1 − 𝑟𝑋,𝑌
2

  

 

վիճականին ունի (𝑛 − 2) ազատության աստիճաններով Ստյուդենտի 

բաշխում: 

 

Դիտողություն 10.20: Թեորեմ 10.14 -ից հետևում է, որ ℍ0 : 𝜌 = 0 վար-

կածն ընդդեմ ℍ1 : 𝜌 ≠ 0 երկընտրանքայինի ստուգող 𝛼 նշանակալիու-

թյան մակարդակով կրիտիկական տիրույթն ունի հետևյալ տեսքը՝ 

 

𝒳1𝛼 = {(𝐱, 𝐲)𝑛 ∶  |𝑡𝑛−2| > 𝑡𝛼 2⁄ (𝑛 − 2)} = 
 

=

{
 

 
(𝐱, 𝐲)𝑛 ∶ |𝑟𝑥,𝑦| >

𝑡𝛼 2⁄ (𝑛 − 2)

√𝑡𝛼 2⁄
2 (𝑛 − 2) + 𝑛 − 2

}
 

 

, 

որտեղ 𝑡𝑛−2-ը 𝑇𝑛−2 վիճականու արժեքն է` 𝑇𝑛−2(𝜔0) = 𝑡𝑛−2, իսկ  

𝑡𝛼 2⁄ (𝑛 − 2)-ը` դրա 𝛼 2⁄  –մակարդակով կրիտիկական եզրը:  

Դիտողություն: Եթե 𝛼 նշանակալիության մակարդակով ℍ0 վարկածը 

չի հերքվում, ապա ասում են, որ կորելյացիոն կապը 𝑋 և 𝑌 պատահական 
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մեծությունների միջև 𝛼 մակարդակով նշանակալի չէ: Հակառակ դեպքում 

(երբ տեղի ունի ℍ1 վարկածը) այդ կապը 𝛼 մակարդակով նշանակալի է:  

Գործնական կիրառությունների համար հաճախ օգտագործվում է 

Ֆիշերի կողմից ներմուծված այսպես կոչված «Ֆիշերի 𝒛 - ձևափոխու-

թյունը»: 

Նշանակենք՝ 

𝑧𝑛 =
1

2
 ln
1 + 𝑟𝑋,𝑌
1 − 𝑟𝑋,𝑌

 ,   𝜁 =
1

2
 ln
1 + 𝜌

1 − 𝜌
∶ 

 

        Ճիշտ է հետևյալ սահմանային թեորեմը (տե՛ս Крамер [8])` 

 

        Թեորեմ 10.15 (Ֆիշեր): Դիցուք (𝐗, 𝐘)𝑛-ը նմուշ է, որը համապատաս-

խանում է երկչափ նորմալ բաշխմանը: ℍ0 : 𝜌 = 𝜌0 վարկածը բավարար-

վելու դեպքում ճիշտ է հետևյալ զուգամիտությունը՝ 

𝑧𝑛
′ = √𝑛 − 3(𝑧𝑛 − 𝜁 −

𝜌0
2(𝑛 − 1)

) 
𝑑
→  ℕ(0, 1) ,   𝑛 → ∞  

(այստեղ բերված մոտարկումը բավականաչափ «լավն է», երբ 𝑛 > 10-ից):  

 

Օրինակ 10.14: Դիցուք (𝐗, 𝐘)𝑛-ը երկչափ նորմալ բաշխումից վերցված 

նմուշ է, որտեղ 𝑛 = 103, r𝑥,𝑦 = 0.5: Պահանջվում է 0.01 նշանակալիության 

մակարդակով ստուգել ℍ0 : ρ = 0.6 վարկածն ընդդեմ ℍ1 : ρ < 0.6 

երկընտրանքայինի: 

Ըստ տվյալների՝ ունենք` 𝑧𝑛 =
1

2
 ln 3, 𝜁 =

1

2
 ln 4, 

𝜌0

2(𝑛−1)
=

0.6

2∙102
= 0.003, 

այնպես որ՝ 𝑧𝑛
′ = −1.468, 𝑧0.01 = 2.326: Այսպիսով, քանի որ  

𝑧𝑛
′ = − 1.468 > − 2.326 = −𝑧0.01, ուստի, համաձայն թեորեմ 10.15-ի, ℍ0 

վարկածը չի հերքվում:    

Օրինակ 10.15: Ըստ (𝑋, 𝑌) պատահական վեկտորի 𝑛 =100 ծավալ 

ունեցող նմուշի՝ ստացված է հետևյալ զուգակցության աղյուսակը՝ 
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 𝑥 

𝑦 100 105 110 115 120 125 

35 4 − 6 7 8 3 

45 5 5 2 10 − − 

55 6 7 − − 2 3 

65 − 6 5 4 − 2 

75 5 1 2 4 3 − 
 

 

Գտնել նմուշային կորելյացիայի գործակիցը և 0.05 նշանակալիու-

թյան մակարդակով ստուգել ℍ0 : 𝜌 = 0 վարկածն ընդդեմ ℍ1 : 𝜌 ≠ 0 

երկընտրանքայինի:  

Նմուշային կորելյացիայի գործակիցը (տե՛ս (10.40)) հավասար է  

𝑟𝑥,𝑦 = (∑∑𝜈𝑖𝑗

𝑘

𝑗=1

𝑠

𝑖=1

𝑎𝑖𝑏𝑗 − 𝑛𝑥̅𝑦̅) 𝑛𝑠𝑥𝑠𝑦 ⁄ :  

Այժմ կատարենք հետևյալ ձևափոխությունը՝ 𝑢𝑗 = 
𝑎𝑗−𝑚1

ℎ1
 ,  𝑣𝑖 = 

𝑏𝑖−𝑚2

ℎ2
∶ 

Պարզ է, որ  
 

𝑟𝑢,𝑣 = 𝑟𝑥,𝑦,  𝑥̅ = 𝑢̅ℎ1 +𝑚1, 𝑦̅ = 𝑣̅ℎ2 +𝑚2,  𝑠𝑥 = 𝑠𝑢ℎ1,   𝑠𝑦 = 𝑠𝑣ℎ2: 
 

       Կառուցենք  𝑈 =
𝑋 − 𝑚1

ℎ1
   և  𝑉 =

𝑌 − 𝑚2

ℎ2
  պատահական մեծությունների 

համար  զուգակցության  աղյուսակը, վերցնելով 𝑚1 = 115, 𝑚2 = 55, 

ℎ1 == 5,  ℎ2 = 10․ 

 𝑢 

𝑣  − 3  − 2  − 1 0 1 2 𝜈𝑖∙ 

 − 2 4 − 6 7 8 3 28 

 − 1 5 5 2 10 − − 22 

0 6 7 − − 2 3 18 

1 − 6 5 4 − 2 17 

2 5 1 2 4 3 − 15 

𝜈∙𝑗 20 19 15 25 13 8 100 
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       Գտնենք 𝑈 և 𝑉 պատահական մեծությունների նմուշային կորելյա-

ցիայի գործակիցը․  
 

𝑟𝑢,𝑣 = (∑𝜈𝑖𝑗𝑢𝑗𝑣𝑖 − 𝑛𝑢̅𝑣̅

𝒊,𝒋

) 𝑛𝑠𝑢𝑠𝑣⁄ ,   𝑖 =  1, … ,   5 ,   𝑗 =  1,   … ,   6, 

որտեղ 

 ∑𝜈𝑖𝑗𝑢𝑗𝑣𝑖 =∑𝑣𝑖 (∑𝜈𝑖𝑗𝑢𝑗
𝑗

) :

𝑖𝒊,𝒋

 

∑𝜈1𝑗𝑢𝑗
𝑗

= − 4,   ∑𝜈2𝑗𝑢𝑗 = − 27,

𝑗

   

 

∑𝜈3𝑗𝑢𝑗
𝑗

= − 24,   ∑𝜈4𝑗𝑢𝑗 = − 13,

 𝑗

   ∑𝜈5𝑗𝑢𝑗 = − 16,

𝑗

  

 

այնպես որ՝ 
 

∑𝜈𝑖𝑗𝑢𝑗𝑣𝑖
𝒊,𝒋

= −10: 

 

Մյուս կողմից՝ կստանանք՝ 
 

𝑢̅ =
1

𝑛
 ∑𝜈∙𝑗𝑢𝑗
𝑗

= − 0.84,   𝑣̅ =
1

𝑛
 ∑𝜈𝑖∙𝑣𝑖  = − 0.31,

𝑖

 

𝑠𝑢
2 =

1

𝑛
 ∑𝜈∙𝑗
𝑗

𝑢𝑗
2 − (𝑢̅)2 = 2.45,   𝑠𝑣

2 =
1

𝑛
 ∑𝜈𝑖∙𝑣𝑖

2 −

𝑖

 (𝑣̅)2 = 2.01,  

 

 𝑠𝑢 = 1.57,   𝑠𝑣 = 1.42 : 

       Այսպիսով, վերջնական կունենանք` 
 

𝑟𝑢,𝑣 = 𝑟𝑥,𝑦 =
− 10 −  100 ∙ (− 0.84) ∙ (− 0.31)

100 ∙ 1.57 ∙ 1.42
= −

36.04

222.94
= − 0.162:  

Այժմ ստուգենք ℍ0 : 𝜌 = 0 վարկածն ընդդեմ ℍ1 : 𝜌 ≠ 0 երկընտրան-

քայինի:  Եթե  տեղի  ունի  ℍ0  վարկածը, ապա,  ըստ  թեորեմ  10.14-ի,  𝛼 

մակարդակով 𝒳1,𝛼 կրիտիկական տիրույթն ունի հետևյալ տեսքը՝ 
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𝒳1,𝛼 = {(𝐱, 𝐲)𝑛 ∶  |𝑡𝑛−2| > 𝑡𝛼 2⁄ (𝑛 − 2)}: 

Ըստ այս օրինակի՝ 𝑇𝑛−2 վիճականու արժեքն է ՝ 
 

𝑡𝑛−2 = √𝑛 − 2 
𝑟𝑥,𝑦

√1 − 𝑟𝑥,𝑦
2

= − √98 ∙
0.162

√0.973
≈ − 1.63, 

 

և քանի որ 𝑡0.025(98) = 1.98, ապա ℍ0 վարկածը չի հերքվում, և կորելյա-

ցիոն կապը 𝑋 և 𝑌 պատահական մեծությունների միջև 0.05 մակարդակով 

նշանակալի չէ :  
 

       Խնդիրներ 
 

10.15. Դիցուք (𝐗1
 , 𝐘1

 )𝑛1-ը և (𝐗2
 , 𝐘2

 )𝑛2-ը համատեղ նորմալ բաշխված 

(𝑋1, 𝑌1) և (𝑋2, 𝑌2) պատահական վեկտորների 𝑛1 և 𝑛2 ծավալի միմյանցից 

անկախ նմուշներ են: 𝛼 նշանակալիության մակարդակով ստուգել  

ℍ0 : 𝜌1 = 𝜌2 (= 𝜌0) վարկածն ընդդեմ ℍ1 : 𝜌1 ≠ 𝜌2 երկընտրանքայինի, 

որտեղ 𝜌1 = 𝜌𝑋1,𝑌1-ը  և  𝜌2 = 𝜌𝑋2,𝑌2-ը կորելյացիայի գործակիցներն են: 
 

Պատասխան՝  հայտանիշի կրիտիկական տիրույթն է՝ 
 

𝒳1𝛼 = {(𝐱1
 , 𝐲1

 )𝑛1 ,  (𝐱2
 , 𝐲2

 )𝑛2 ∶  |𝑧𝑛1,𝑛2| > 𝑧𝛼 2⁄ }, 
 

ℤ𝑛1,𝑛2 =
1

√
1

𝑛1 − 3
+

1
𝑛2 − 3

 (𝑧1 − 𝑧2) −
𝜌0
2
(

1

𝑛1 − 1
−

1

𝑛2 − 1
),   ℤ𝑛1,𝑛2(𝜔0) = 𝑧𝑛1,𝑛2 , 

𝑧𝑖 =
1

2
ln
1 + 𝑟𝑋𝑖,𝑌𝑖
1 − 𝑟𝑋𝑖,𝑌𝑖

 ,  

իսկ 𝑟𝑋𝑖,𝑌𝑖-երը (𝑖 = 1, 2) նմուշային կորելյացիայի գործակիցներն են: 

 

10.16. Դիցուք (𝐗, 𝐘)𝑛-ը համատեղ նորմալ բաշխում ունեցող պատա-

հական վեկտորի 46 ծավալի նմուշ է: Նմուշային կորելյացիայի գործակցի 

համար ստացվել է 𝑟𝑥,𝑦 = 0.7928 արժեքը: 0.05 նշանակալիության մակար-

դակով ստուգել ℍ0 : 𝜌 = 0.9 վարկածն ընդդեմ ℍ1: 𝜌 < 0.9 մրցող վար-

կածի: 
 

Ցուցում՝ օգտվել թեորեմ 10.15-ից: 
 

Պատասխան՝ վարկածը հերքվում է: 
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Գլուխ 11 

Երկու փոփոխականով գծային ռեգրեսիոն մոդել 

 
Ռեգրեսիա հասկացությունը առաջին անգամ գործածել է անգլիացի 

վիճակագիր Ֆրենսիս Գալտոնը, որը, ուսումնասիրելով 205 ամուսնական 

զույգ և նրանց 930 չափահաս երեխա, նկատել էր, որ այն երեխաները, 

որոնց ծնողների միջին հասակը մեծ է տվյալ բնակչության միջին հա-

սակից, ավելի ցածրահասակ են լինում, քան իրենց ծնողները: Եվ ընդհա-

կառակն, երեխաները, որոնց ծնողների միջին հասակը բնակչության մի-

ջին հասակից ցածր է, ծնողներից ավելի բարձրահասակ են: Այդ երևույթը 

նա անվանել էր «ռեգրեսիա» դեպի բնակչության հասակի միջին արժեքը:  

 

       § 11.1. Նվազագույն քառակուսիների գնահատականներ 

 

       Դիտողությոն 11.1: Ռեգրեսիոն տեսությունում ընդունված է վեկտոր-

ները (նմուշները) դիտարկել որպես սյունակ վեկտորներ: 

       Դիցուք դիտվում են 𝑋 և 𝑌 փոփոխականների (𝑋𝑖, 𝑌𝑖), 𝑖 = 1,… , 𝑛 զույ-

գերը: Պահանջվում է 𝑓(𝑋) = 𝑎 + 𝑏𝑋, 𝑎, 𝑏 ∈ ℛ գծային ֆունկցիայի միջոցով  

𝐹(𝑎, 𝑏) =∑(𝑌𝑖 − (𝑎 + 𝑏𝑋𝑖))
2

𝑛

𝑖=1

 

արտահայտության մինիմումի իմաստով լավագույն ձևով մոտարկել 

(𝑋𝑖 , 𝑌𝑖), 𝑖 = 1,… , 𝑛 կետերը, այսինքն՝ 𝑓(𝑋) = 𝑎 + 𝑏𝑋, 𝑎 ∈ ℛ, 𝑏 ∈ ℛ գծային 

ֆունկցիաների դասում գտնել այն 𝑓(𝑋) = 𝑎̂  + 𝑏̂𝑋 ֆունկցիան, որը մինի-

մալացնի 𝐹(𝑎, 𝑏) քառակուսիների գումարը: (Այդ տիպի խնդիրներ առա-

ջին անգամ դիտարկել է Գաուսը, իսկ մեթոդը անվանվել է նվազագույն 

քառակուսիների եղանակ): 
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Մինիմումի անհրաժեշտ պայմաններից՝  

{
 
 

 
 𝜕𝐹

𝜕𝑎
= −2∑(𝑌𝑖 − 𝑎 − 𝑏𝑋𝑖) = 0,

𝑛

𝑖=1

𝜕𝐹

𝜕𝑏
= −2∑𝑋𝑖(𝑌𝑖 − 𝑎 − 𝑏𝑋𝑖) = 0,

𝑛

𝑖=1

 

 ստանում ենք այսպես կոչված նորմալ հավասարումների համակարգը՝  

 

{
 
 

 
 𝑎𝑛 + 𝑏∑𝑋𝑖

 

 

=∑𝑌𝑖  ,

 

 

𝑎∑𝑋𝑖

 

 

+ 𝑏∑𝑋𝑖
2

 

 

=∑𝑋𝑖𝑌𝑖 ,

 

 

                                     (11.1) 

որի լուծումներն են (պարզության համար այստեղ և հետագայում 

գումարի նշանի ինդեքսները բաց են թողնվում, եթե 𝑖 = 1,… , 𝑛)՝  

𝑏̂ =
𝑛∑𝑋𝑖𝑌𝑖 − (∑𝑋𝑖) (∑𝑌𝑖)

𝑛 ∑𝑋𝑖
2 − (∑𝑋𝑖)

2
=
𝑆𝑋𝑌
2

𝑆𝑋
2 = 𝑟𝑋,𝑌  

𝑆𝑌
𝑆𝑋
 ,                       (11.2) 

 

𝑎̂ = 𝐘 − 𝑏̂𝐗̅, 𝐗 = ‖𝑋1, … , 𝑋𝑛‖
𝑇 , 𝐘 = ‖𝑌1, … , 𝑌𝑛‖

𝑇 :                  (11.3) 

𝑎̂ և 𝑏̂ լուծումները կոչվում են 𝑎 և 𝑏 պարամետրերի նվազագույն քա-

ռակուսիների (ՆՔ) գնահատականներ: Այսպիսով, 𝑌̂ = 𝑎̂ + 𝑏̂𝑋-ը որոնելի 

ուղիղն է:  

Պարզ է, որ 𝑌̂ = 𝑎̂ + 𝑏̂𝑋 ուղիղն անցնում է (𝐗̅, 𝐘) կետով այնպես, որ 

այդ ուղղի հավասարումը կարելի է ներկայացնել նաև հետևյալ տեսքով՝ 

 𝑌̂ − 𝐘 = 𝑏̂(𝑋 − 𝐗̅):                                               (11.4)  

Հեշտ է տեսնել, որ 

 𝐘 =
1

𝑛
 ∑𝑌̂𝑖 =

 

 

𝑎̂ + 𝑏̂𝐗̅ = 𝐘,   𝐘 = ‖𝑌̂1, … , 𝑌̂𝑛‖
𝑇
:                   (11.5) 

Կատարենք փոփոխականների փոխարինում՝ նշանակելով՝  

 𝑥𝑖 = 𝑋𝑖 − 𝐗̅,  𝑦𝑖 = 𝑌𝑖 − 𝐘:                                      (11.6)  
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Այդ դեպքում 

  𝐹(𝑎, 𝑏) =  ∑(𝑦𝑖 − (𝑎 + 𝑏𝑥𝑖))
2

 

 

 

արտահայտության մինիմալացման խնդիրը հանգեցնում է հետևյալ գնա-

հատականներին՝ 

𝑎̂ = 0 (քանի որ 𝐱̅ = 𝐲̅ = 0),   𝑏̂ =
∑𝑥𝑖𝑦𝑖
∑𝑥𝑖

2 = 𝑟𝑥,𝑦
𝑠𝑦

𝑠𝑥
 ,                   (11.7) 

և գնահատվող ուղղի հավասարումը կլինի  
 

 𝑦̂ = 𝑏̂𝑥:                                                          (11.8) 

Օրինակ 11.1: (𝑋𝑖 , 𝑌𝑖), 𝑖 = 1,… , 16 դիտումների միջոցով ստացվել են 

հետևյալ արժեքները՝ 

∑𝑋𝑖
2 = 657,   ∑𝑋𝑖𝑌𝑖 = 492,   ∑𝑌𝑖 = 64,   ∑𝑋𝑖 = 96 ∶ 

Գտնենք (𝑋𝑖 , 𝑌𝑖), 𝑖 = 1,… , 16 կետերի միջին քառակուսային իմաստով 

«լավագույնս» մոտարկող 𝑌̂ = 𝑎̂ + 𝑏̂𝑋 ուղղի հավասարումը: 

(11.2) և (11.3) բանաձևերից կստանանք 𝑎 և 𝑏 պարամետրերի 

համար նվազագույն քառակուսիների գնահատականները`  

𝑏̂ =
16 ∙ 492 − 96 ∙ 64

16 ∙ 657 − 962
=
4

3
 ,   𝑎̂ =

64

16
−
96

16
∙
4

3
= − 4:  

Այնպես որ որոնելի ուղիղը (տե՛ս (11.4)) կունենա հետևյալ տեսքը՝ 

 𝑌̂ = 4 +
4

3
(𝑋 − 6) =

4

3
𝑋 − 4:  

 

       Խնդիրներ 
 

11.1. Ապացուցել, որ  𝐞 = 𝐘 − 𝐘  վեկտորը օրթոգոնալ է 1 = ‖1,… , 1⏟  
𝑛

‖

𝑇 

  

և 𝐗 = ‖𝑋1, … , 𝑋𝑛‖
𝑇 վեկտորներին  (𝐞 = ‖𝑒1, … , 𝑒𝑛‖

𝑇 ,   𝐘 = ‖𝑌1, … , 𝑌𝑛‖
𝑇 ,   𝐘 =

= ‖𝑌̂1, … , 𝑌̂𝑛‖
𝑇
):  
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11.2. Գտնել նվազագույն քառակուսիների եղանակով 𝑓(𝑋) = 𝑎 +
𝑏

𝑋
  

(𝑎, 𝑏 ∈ ℛ) ֆունկցիաների դասում (𝑋𝑖 , 𝑌𝑖), 𝑖 = 1,… , 𝑛 կետերի «լավագույն» 

մոտարկումը:  
 

 

Պատասխան՝ 
 

  𝑏̂ =
𝑛∑

𝑌𝑖
𝑋𝑖
 −  (∑𝑌𝑖) (∑

1
𝑋𝑖
)

𝑛 ∑
1
𝑋𝑖
2 − (∑

1
𝑋𝑖
)
2

 

,   𝑎̂ = 𝑌  ̅ − (
1

𝑛
 ∑

1

𝑋𝑖
) 𝑏̂ ∶  

 

       § 11.2. Գաուս - Մարկովի թեորեմ 

 

Այժմ դիցուք տրված է (𝑋, 𝑌) պատահական վեկտորը, որին համապա-

տասխանում է (𝑋1, 𝑌1),… , (𝑋𝑛, 𝑌𝑛) պատահական նմուշը, ընդ որում՝ 𝑌 

պատահական մեծության ըստ 𝑋𝑖-երի պայմանական մաթեմատիկական 

սպասումները` E(𝑌|𝑋𝑖) ∶= 𝑓(𝑋𝑖), կախված են 𝑋𝑖-երից գծային ձևով՝     

𝑓(𝑋𝑖) = 𝑎 + 𝑏𝑋𝑖, ուստի 𝑌𝑖-երը կարելի է ներկայացնել  
 

 𝑌𝑖 = E(𝑌|𝑋𝑖) + 𝜀𝑖 = 𝑎 + 𝑏𝑋𝑖 + 𝜀𝑖  ,   𝑖 = 1, 2, … , 𝑛                   (11.9) 
 

տեսքով: Այստեղ 𝜀𝑖-երը E(𝑌|𝑋𝑖) արժեքներից 𝑌𝑖-երի «տատանումները» 

նկարագրող պատահական մեծություններ են:  

𝑌𝑖 և 𝑋𝑖 պատահական մեծությունների միջև (11.9) ներկայացումով 

տրվող կապը կոչվում է գծային ռեգրեսիոն մոդել: 𝑋𝑖 պատահական 

մեծությունն անվանվում է ռեգրեսոր (պրեդիկտոր), 𝑌𝑖 պատահական 

մեծությունը` «արձագանք», իսկ 𝜀𝑖-ն՝ ռեգրեսիայի սխալ կամ «աղմուկ»: 

𝑓(𝑥) = E(𝑌|𝑥) ∶= E(𝑌|𝑋 = 𝑥) ֆունկցիան (𝑥 ∈ ℛ) կոչվում է ռեգրեսիայի 

ֆունկցիա:  

Եթե 𝑋-ը, 𝑋1, … , 𝑋𝑛 արժեքներ ընդունող ոչ պատահական փոփոխա-

կան է, ապա (11.9) ներկայացման մեջ մասնակցող 𝑋𝑖  ռեգրեսորն 

անվանվում է բացատրող (անկախ) փոփոխական, իսկ 𝑌𝑖 «արձագանքը»՝ 

բացատրվող (կախյալ) փոփոխական:  
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Հետագայում (11.9) գծային ռեգրեսիոն մոդելի վրա կդրվեն հետևյալ  

(H) պայմանները`   

H 1.  𝑋𝑖-երը ոչ պատահական մեծություններ են, 

 

H 2.  E(𝜀𝑖) = 0, var(𝜀𝑖) = 𝜎
2,  𝑖 = 1,… , 𝑛, 

 

 cov(𝜀𝑖,  𝜀𝑗) = E(𝜀𝑖𝜀𝑗) = 0,   𝑖 ≠ 𝑗,   𝑖, 𝑗 = 1,… , 𝑛:  

Որոշ դեպքերում H 2. պայմանը կփոխարինվի հետևյալ պայմանով՝ 

H 3.  𝜀𝑖 ~ ℕ(0,  σ
2), 𝑖 = 1,… , 𝑛 սխալները միևնույն ցրվածքով համա-

տեղ նորմալ օրենքով բաշխված անկախ պատահական մեծություններ են: 

  

H 1. և H 3. պայմանները բավարարող ռեգրեսիոն մոդելները կոչվում 

են նորմալ գծային ռեգրեսիոն մոդելներ:   
 

var(𝜀𝑖) = 𝜎
2, 𝑖 = 1,… , 𝑛  պայմանը բավարարող (11.9) ռեգրեսիոն 

մոդելները կոչվում են համասեռ մոդելներ:  
 

Այժմ դիտարկենք (11.9) մոդելին համապատասխանող (𝑋1, 𝑌1), …,  

(𝑋𝑛, 𝑌𝑛) նմուշի միջոցով 𝑎, 𝑏 և σ2 պարամետրերի կետային գնահատման 

հարցը: 

Նշանակենք՝ 
 

ℒθ
0(𝐘) = {θ∗ ∶  θ∗ = ∑ 𝑐𝑖𝑌𝑖 ,

 
   𝑐𝑖 ∈ ℛ,   Eθ(θ

∗) = θ } -ով 

որոշակի θ պարամետրի գծային (ըստ 𝑌𝑖-երի) անշեղ գնահատականների 

դասը:  

Գծային ռեգրեսիոն մոդելների համար ճիշտ է հետևյալ ֆունդամեն-

տալ արդյունքը՝(11.3) 

        Թեորեմ 11.1 (Գաուս – Մարկով ): Դիցուք  (11.9) մոդելը բավարարում 

է  H 1., H 2.  պայմանները: Այդ  դեպքում   𝑎 և  𝑏  պարամետրերի  նվազա-

գույն  քառակուսիների  𝑎̂  և   𝑏̂ գնահատականները   (տե՛ս  (11.2), (11.3)) 

օպտիմալ  են  (ունեն նվազագույն  ցրվածքներ)  համապատասխանաբար 

ℒ𝑎
0(𝐘) և ℒ𝑏

0(𝐘) դասերում: 
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        Լեմմա 11.1. Ճիշտ են հետևյալ առնչությունները՝ 
 

 ա) ∑𝜔𝑖 = 0,   բ) ∑𝜔𝑖
2 =

 

 

 

 

 
1

∑𝑥𝑖
2  ,   գ) ∑𝜔𝑖𝑥𝑖 =∑𝜔𝑖𝑋𝑖 = 1,

 

 

 

 

  

դ) ∑𝜔𝑖𝑦𝑖 =∑𝜔𝑖𝑌𝑖  ,   որտեղ  𝜔𝑖 ∶=

 

 

 

 

𝑥𝑖
∑𝑥𝑗

2  (տե՛ս (11.6)): 

Ա պ ա ց ու ց ու մ:   

Հետևում է՝ ա) ∑ 𝑥𝑖 = 0
 
  պայմանից, 

բ) ∑𝜔𝑖
2 =

 

 

(
1

∑𝑥𝑖
2)

2

∑𝑥𝑖
2

 

 

=
1

∑𝑥𝑖
2 , 

գ)∑𝜔𝑖𝑥𝑖 =∑𝜔𝑖𝑋𝑖 − 𝐗
 ̅∑𝜔𝑖 =∑𝜔𝑖

 

 

 

 

𝑋𝑖 ,

 

 

 

 

  

մյուս կողմից՝  ∑𝜔𝑖𝑥𝑖 =

 

 

(
1

∑𝑥𝑗
2)∑𝑥𝑖

2

 

 

= 1, 

դ)  ակնհայտ է (տե՛ս  գ) կետը):       
 

        Լեմմա 11.2:  H 1. և  H 2. պայմանների դեպքում՝  𝑎̂ ∈ ℒ𝑎
0(𝐘), 𝑏̂ ∈

ℒ𝑏
0(𝐘) և  

 

var(𝑎̂) =
σ2

𝑛
∙  
∑𝑋𝑖

2

∑𝑥𝑖
2  ,   var(𝑏̂) =  

σ2

∑𝑥𝑖
2 , 

 

 cov(𝑎̂, 𝑏̂) = −
σ2 𝐗̅

∑ 𝑥𝑖
2 ∶                                       (11.10) 

Ա պ ա ց ու ց ու մ: Նախ ցույց տանք, որ 𝑎̂ և 𝑏̂ գնահատականները 

գծային են ըստ 𝑌𝑖-երի: Ներկայացնենք 𝑏 պարամետրի գնահատականը 

հետևյալ ձևով՝ 

𝑏̂ =
𝑆𝑋𝑌
2

𝑆𝑋
2 =

∑𝑥𝑖𝑦𝑖
∑𝑥𝑖

2 =∑𝜔𝑖𝑦𝑖

 

 

=∑𝜔𝑖(𝑌𝑖 − 𝐘
 ̅)  =∑𝜔𝑖𝑌𝑖 ∶

 

 

 

 

 

𝑎 պարամետրի գնահատականը կարտահայտվի  
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𝑎̂ = 𝐘 − 𝑏̂ 𝐗̅ =∑(
1

𝑛
− 𝐗̅𝜔𝑖)

 

 

𝑌𝑖 

տեսքով: Այնպես որ, 𝑎̂ և 𝑏̂ վիճականիները գծային ձևով են ներկայացվում 

𝑌𝑖-ի միջոցով:  

 Այժմ ցույց տանք 𝑎̂ և 𝑏̂ գնահատականների անշեղությունը: Համա-

ձայն (11.9)-ի և լեմմա 11.1-ի՝  

 𝑏̂ = ∑𝜔𝑖𝑌𝑖 =

 

 

∑𝜔𝑖(𝑎 + 𝑏𝑋𝑖 + 𝜀𝑖) = 𝑏 +

 

 

∑𝜔𝑖

 

 

𝜀𝑖:         (11.11) 

Այստեղից կստանանք` 

E(𝑏̂) = 𝑏 +∑𝜔𝑖

 

 

E(𝜀𝑖) = 𝑏,   այսինքն`  𝑏̂ ∈ ℒ𝑏
0(𝐘):  

Մյուս կողմից՝ ունենք` 

𝑎̂ =∑(
1

𝑛
− 𝐗̅𝜔𝑖)

 

 

𝑌𝑖 =∑(
1

𝑛
− 𝐗̅𝜔𝑖) (𝑎 + 𝑏𝑋𝑖 + 𝜀𝑖) = 𝑎 − 𝑎𝐗̅∑𝜔𝑖 +

 

 

𝑏𝐗̅ −

 

 

 

− 𝑏𝐗̅∑𝜔𝑖𝑋𝑖 + ∑(
1

𝑛
− 𝐗̅𝜔𝑖) 𝜀𝑖

 

 

 

 

= 𝑎 +∑(
1

𝑛
− 𝐗̅𝜔𝑖) 𝜀𝑖 ,        (11.12)

 

 

 

որտեղից՝  E(𝑎̂) = 𝑎  և  𝑎̂ ∈ ℒ𝑎
0(𝐘):   

Գտնենք 𝑎̂ և 𝑏̂ գնահատականների ցրվածքները: Համաձայն (11.11)-ի՝ 

var(𝑏̂) = E(𝑏̂ − 𝑏)
2
= E(∑𝜔𝑖

 

 

𝜀𝑖)

2

= E(∑𝜔𝑖
2𝜀𝑖
2 +∑𝜔𝑖𝜔𝑗𝜀𝑖𝜀𝑗

 

𝑖≠𝑗
 

 

 

) = 

 = σ2∑𝜔𝑖
2

 

 

+∑𝜔𝑖𝜔𝑗E(𝜀𝑖𝜀𝑗)

 

𝑖≠𝑗
 

=
σ2

∑𝑥𝑖
2 ∶ 

Մյուս կողմից՝ համաձայն (11.12)–ի`  
 

var(𝑎̂) = E(𝑎̂ − 𝑎)2 = σ2∑(
1

𝑛
− 𝐗̅𝜔𝑖)

2

=

 

 

σ2 (
1

𝑛
+ (𝐗̅)2∑𝜔𝑖

2 −
2𝐗̅

𝑛
 

 

 

∑𝜔𝑖

 

 

) 

= σ2 (
1

𝑛
+
(𝐗̅)2

∑𝑥𝑖
2 ) =

σ2

𝑛
∙  
𝑛(𝐗̅)2 + ∑ (𝑋𝑖 − 𝐗̅)

2 
 

∑𝑥𝑖
2  =

σ2

𝑛
∙  
∑𝑋𝑖

2

∑𝑥𝑖
2 ∶ 
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Դժվար չէ ստանալ նաև (11.10) ներկայացումը (տե՛ս խնդիր 11.3-ը):       

 Գ ա ու ս – Մ ա ր կ ո վ ի  թ ե ո ր ե մ ի  ա պ ա ց ու ց ու մ:  Ցույց տանք, 

որ 𝑎̂ և 𝑏̂ գնահատականներն օպտիմալ են համապատասխանաբար ℒ𝑎
0(𝐘) 

և ℒ𝑏
0(𝐘) դասերում: Դիցուք 

 

  𝑏̃ = ∑𝑐𝑖𝑌𝑖   և  𝑎̃ = ∑𝑑𝑖𝑌𝑖  ,   

 

 

 

 

 

𝑏  և  𝑎 պարամետրերի համապատասխանաբար ℒ𝑏
0(𝐘) և ℒ𝑎

0(𝐘) դասերից 

որոշակի գնահատականներ են: Գտնենք 𝑐𝑖 և 𝑑𝑖 գործակիցների այնպիսի 

արժեքներ, որ var(𝑏̃) և var(𝑎̃) ցրվածքներն ընդունեն իրենց նվազագույն 

արժեքները:  
 

Սկզբում դիտարկենք  𝑏̃ =  ∑ 𝑐𝑖𝑌𝑖 
 
  գնահատականի դեպքը: Քանի որ 

𝑌𝑖 -երը բավարարում են (11.9) մոդելին, ապա 

 𝑏̃ =  ∑𝑐𝑖𝑌𝑖 =

 

 

 𝑎∑𝑐𝑖 + 𝑏

 

 

∑𝑐𝑖𝑋𝑖  +  ∑𝑐𝑖𝜀𝑖 ,

 

 

 

 

            (11.13)  

որտեղից` 

E(𝑏̃) = 𝑎∑𝑐𝑖

 

 

+ 𝑏∑𝑐𝑖𝑋𝑖 ∶

 

 

 

𝑏̃ ∈ ℒ𝑏
0(𝐘) պայմանից հետևում է, որ E(𝑏̃) = 𝑏, այսինքն՝ 

 𝑎∑𝑐𝑖

 

 

+ 𝑏 (∑𝑐𝑖

 

 

𝑋𝑖 − 1) = 0                                  (11.14) 

ցանկացած 𝑎, 𝑏 ∈ ℛ-ից: Վերցնելով մասնավորապես 𝑎 = 0, 𝑏 = 1 և այնու-

հետև՝ 𝑎 = 1, 𝑏 = 0՝ (11.14)-ից կստանանք` 

 ∑𝑐𝑖

 

 

= 0  և ∑𝑐𝑖

 

 

𝑋𝑖 = 1:                                      (11.15) 

Մյուս կողմից՝ (11.13)-ից ունենք`  

var(𝑏̃) =∑𝑐𝑖
2

 

 

var(𝜀𝑖) = σ
2∑𝑐𝑖

2 ∶
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Այժմ գտնենք (11.15) սահմանափակումների դեպքում var(𝑏̃) ցրված-

քի պայմանական մինիմումը: Ներմուծենք  

𝐻(𝑐1, … , 𝑐𝑛; 𝜆, 𝜇) =∑𝑐𝑖
2 −

 

 

𝜆∑𝑐𝑖

 

 

− 𝜇 (∑𝑐𝑖

 

 

𝑋𝑖 − 1)  

Լագրանժի ֆունկցիան: 𝐻(𝑐1, … , 𝑐𝑛; 𝜆, 𝜇) ֆունկցիայի էքստրեմումի 

անհրաժեշտ պայմանը հանգեցնում է հետևյալ համակարգին՝ 
 

 

{
 
 
 

 
 
 
𝜕𝐻

𝜕𝑐𝑖
= 2𝑐𝑖 − 𝜆 − 𝜇𝑋𝑖 = 0, 𝑖 = 1,… , 𝑛                      (11.16)

𝜕𝐻

𝜕𝜆
= − ∑𝑐𝑖

 

 

= 0,                                                            (11.17) 

−
𝜕𝐻

𝜕𝜇
=∑𝑐𝑖

 

 

𝑋𝑖 − 1 = 0 ∶                                                (11.18)

 

 

(11.16) հավասարումներից կստանանք` 
 

 𝑐𝑖 =
1

2
(𝜆 + 𝜇𝑋𝑖),        𝑖 = 1,… , 𝑛 ,                                  (11.19) 

որտեղից՝  

0 =∑𝑐𝑖

 

 

=
1

2
(𝜆𝑛 +  𝜇∑𝑋𝑖

 

 

) , 

այնպես որ՝ 𝜆 = − 𝜇𝐗̅: Տեղադրելով կրկին 𝜆-ի այս արժեքը (11.19) բանա-

ձևի մեջ կստանանք` 

𝑐𝑖 =
𝜇

2
(𝑋𝑖 − 𝐗̅) =

𝜇

2
𝑥𝑖: 

Բազմապատկելով այս արտահայտության ձախ և աջ մասերը 𝑋𝑖-ով, 

գումարելով (𝑖 = 1,… , 𝑛) և օգտվելով (11.18)-ից՝ կստանանք՝  

𝜇 =
2

∑𝑥𝑖𝑋𝑖
=

2

∑𝑥𝑖(𝑥𝑖 + 𝐗̅)
=

2

∑𝑥𝑖
2 , 

որտեղից` 

𝑐𝑖 =
𝜇

2
 𝑥𝑖 =

𝑥𝑖
∑𝑥𝑖

2 = 𝜔𝑖 :  

Այսպիսով, ունենք` 
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𝑏̃ =∑𝜔𝑖

 

 

𝑌𝑖 = 𝑏̂: 

Այժմ դիտարկենք 

 𝑎̃ = ∑𝑑𝑖𝑌𝑖   գնահատականը

 

 

:  

 𝑌𝑖 = 𝑎 + 𝑏𝑋𝑖 + 𝜀𝑖   պայմանից ունենք` 
 

 𝑎̃ = 𝑎∑𝑑𝑖 + 𝑏∑𝑑𝑖𝑋𝑖 +∑𝑑𝑖𝜀𝑖

 

 

 

 

,

 

 

                          (11.20) 

որտեղից` 

E(𝑎̃) = 𝑎∑𝑑𝑖 + 𝑏∑𝑑𝑖𝑋𝑖 ∶

 

 

 

 

 

E(𝑎̃) = 𝑎 պայմանից բոլոր  𝑎, 𝑏 ∈ ℛ-ից կստանանք` 
 

𝑎 (∑𝑑𝑖 − 1

 

 

) + 𝑏∑𝑑𝑖𝑋𝑖  = 0

 

 

: 

Մասնավորապես՝ 𝑎 = 0, 𝑏 = 1 և 𝑎 = 1, 𝑏 = 0 դեպքերի համար 

կստանանք համապատասխանաբար հետևյալ պայմանները՝ 
 

 ∑𝑑𝑖 = 1

 

 

   և ∑𝑑𝑖𝑋𝑖  = 0

 

 

:                                    (11.21) 

 

Մյուս կողմից՝ (11.20)-ից ունենք` 

var(𝑎̃) =∑𝑑𝑖
2

 

 

var(𝜀𝑖) = σ
2∑𝑑𝑖

2 ∶

 

 

  

Գտնենք (11.21) սահմանափակումների դեպքում var(𝑎̃) ցրվածքի պայ-

մանական մինիմումը:  
 

Դիտարկենք լագրանժիանը՝ 

𝐻(𝑑1, … , 𝑑𝑛; 𝜆, 𝜇) =∑𝑑𝑖
2  −  𝜆 (∑𝑑𝑖 − 1

 

 

) − 𝜇∑𝑑𝑖𝑋𝑖

 

 

:

 

 

 

𝐻(𝑑1, … , 𝑑𝑛; 𝜆, 𝜇) ֆունկցիայի էքստրեմումի անհրաժեշտ պայմաններից 

կստանանք` 
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{
 
 
 

 
 
 
𝜕𝐻

𝜕𝑑𝑖
= 2𝑑𝑖 − 𝜆 − 𝜇𝑋𝑖 = 0,   𝑖 = 1,… , 𝑛 

−
𝜕𝐻

𝜕𝜆
=∑𝑑𝑖 − 1

 

 

= 0,                           

−
𝜕𝐻

𝜕𝜇
=∑𝑑𝑖𝑋𝑖  

 

 

= 0:                             

⇔ 

 

⇔ 

{
 
 
 

 
 
 𝑑𝑖 =

1

2
(𝜆 + 𝜇𝑋𝑖),   𝑖 = 1,… , 𝑛                                            (11.22)

∑𝑑𝑖 = 1,                                                                                (11.23)

 

 

∑𝑑𝑖𝑋𝑖  

 

 

= 0:                                                                          (11.24)

 

 

Գումարելով (11.22) արտահայտության ձախ և աջ մասերը և, հաշվի 

առնելով (11.23) պայմանը, կստանանք` 
 

1 =∑𝑑𝑖 =
1

2
(𝜆𝑛 + 𝜇∑𝑋𝑖

 

 

) ,

 

 

 

որտեղից՝  𝜆 =
2

𝑛
− 𝜇𝐗̅:  Տեղադրելով այս արժեքը (11.22) բանաձևի մեջ՝ 

կստանանք` 

𝑑𝑖 =
1

𝑛
+
1

2
 𝜇𝑥𝑖: 

 

Բազմապատկելով այս արտահայտության ձախ և աջ մասերը Xi­ով և 

գումարելով (հաշվի առնելով (11.24) պայմանը)՝ կունենանք` 
 

 0 =∑𝑑𝑖𝑋𝑖

 

 

= 𝐗̅ +
𝜇

2
 ∑𝑥𝑖𝑋𝑖 ,

 

 

 

որտեղից՝ 

𝜇 = −
2 𝐗  ̅

∑𝑥𝑖𝑋𝑖
= −

2 𝐗  ̅

∑𝑥𝑖
2  , 

այնպես որ՝ 
 

𝑑𝑖 =
1

𝑛
+
1

2
𝜇 𝑥𝑖 = 

1

𝑛
−
𝐗̅ 𝑥𝑖
∑𝑥𝑖

2  =
1

𝑛
− 𝐗̅𝜔𝑖     և 
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 𝑎̃ = ∑𝑑𝑖𝑌𝑖 =∑(
1

𝑛
− 𝐗̅𝜔𝑖)

 

 

 

 

𝑌𝑖 = 𝑎̂ ∶  

Այսպիսով, թեորեմն ապացուցված է:                 

Նվազագույն քառակուսիների 𝒂̂ և 𝒃̂ գնահատականների ունակու-

թյունը 
 

        Թեորեմ 11.2:  Դիցուք տեղի ունեն  H 1. և  H 2. պայմանները, և 
 

∑𝑥𝑖
2 → ∞,   𝑛 → ∞  ու ∑𝑋𝑖

2

 

 

= O(∑𝑥𝑖
2

 

 

) :

 

 

 

Այդ դեպքում (11.9) ռեգրեսիոն մոդելի 𝑎 և 𝑏 պարամետրերի 𝑎̂ = (𝑎̂𝑛)𝑛≥1 

և 𝑏̂  = (𝑏̂𝑛)𝑛≥1 նվազագույն քառակուսիների գնահտականներն ունակ են, 

այսինքն՝  

𝑎̂𝑛
P
→  𝑎  և   𝑏̂𝑛  

P
→  𝑏,      𝑛 → ∞: 

Ա պ ա ց ու ց ու մ: Համաձայն Գաուս – Մարկովի թեորեմի՝ (11.9) 

մոդելի 𝑎 և 𝑏 պարամետրերի 𝑎̂𝑛 և 𝑏̂𝑛 նվազագույն քառակուսիների գնա-

հատականներն անշեղ են, այսինքն՝ 

E(𝑎̂𝑛) = 𝑎  և  E(𝑏̂𝑛) =  𝑏 : 

Մյուս կողմից՝ ըստ լեմմա 11.2 -ի՝ 

var(𝑎̂𝑛) =
𝜎2

𝑛
∙  
∑𝑋𝑖

2

∑𝑥𝑖
2  ,   var(𝑏̂𝑛) =  

𝜎2

∑𝑥𝑖
2 ∶ 

Այսպիսով՝ 

 var(𝑎̂𝑛) → 0  և  var(𝑏̂𝑛) → 0, 𝑛 → ∞, 

այնպես որ, օգտվելով գնահատականների ունակության հայտանիշից 

(տե՛ս [15]-ի հետևանք 5.21-ը), կստանանք` 

 𝑎̂𝑛
P
→𝑎  և  𝑏̂𝑛  

P
→ 𝑏,  𝑛 → ∞: 
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       Խնդիրներ 
 

11.3. Ապացուցել (11.10) բանաձևը: 
 

11.4. Դիցուք տրված է H 1. և H 2. պայմանները բավարարող (11.9) 

մոդելը, որտեղ  𝑋𝑖 = 𝑖,  𝑖 = 1,… , 6 :  Դիտարկենք 𝑏 պարամետրի  
 

𝑏̃ =
1

8
 (𝑌6 + 𝑌5 − 𝑌2 − 𝑌1) 

 

գնահատականը: Գտնել այդ գնահատականի ցրվածքը և համեմատել 

նվազագույն քառակուսիների 𝑏̂ գնահատականի ցրվածքի հետ: 
 

Պատասխան՝  var (𝑏̃) =
σ2

17.5
 , var (𝑏̂ ) =

σ2

16
∶ 

 

       § 11.3. Մնացորդային ցրվածք 
  

Գնահատենք (11.9) ռեգրեսիոն մոդելի 𝜀𝑖 սխալների σ2 ցրվածքը: 

Ռեգրեսիայի մնացորդներ կոչվում են  

𝑒𝑖 = 𝑌𝑖 − 𝑌𝑖̂ = 𝑌𝑖 − 𝑎̂ − 𝑏̂𝑋𝑖 = 𝑦𝑖 − 𝑏̂𝑥𝑖 ,   𝑖 = 1,… , 𝑛              (11.25) 

վիճականիները:  

Դիտողություն 11.2: Պետք է տարբերել 𝑒𝑖 մնացորդները ռեգրեսիայի 

𝜀𝑖 սխալներից: (11.9) ռեգրեսիոն մոդելի 𝜀𝑖 սխալները, ինչպես և 𝑒𝑖 մնա-

ցորդները, պատահական մեծություններ են: Սակայն, ի տարբերություն 

սխալների, մնացորդները արտահայտվում են 𝑌𝑖   դիտումների միջոցով 

(տե՛ս (11.25)):  

Նկատենք (տե՛ս (11.5)), որ 

 ∑𝑒𝑖

 

 

=∑(𝑌𝑖 − 𝑌𝑖̂) = 𝑛

 

 

𝐘 − 𝑛𝐘 = 0:                        (11.26) 

       Թեորեմ 11.3: Դիցուք բավարարվում են H 1. և H 2. պայմանները: Այդ 

դեպքում 

 𝕤2 ∶= 𝜎2̂ =
1

𝑛 − 2
 ∑𝑒𝑖

2

 

 

                                     (11.27) 

վիճականին  𝜎2 ցրվածքի համար անշեղ գնահատական է:
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       𝕤2 վիճականին կոչվում է մնացորդային ցրվածք, իսկ 𝕤 = √𝕤2 վիճա-

կանին՝ մնացորդային միջին քառակուսային (կամ ստանդարտ) շեղում: 

Միջին քառակուսային շեղումը նկարագրում է ռեգրեսիայի ուղղի շուրջ 

(𝑋𝑖 , 𝑌𝑖),  𝑖 = 1,… , 𝑛  դիտվող արժեքների կուտակվածության աստիճանը: 

Թ ե ո ր ե մ ի  ա պ ա ց ու ց ու մ: Դիտարկենք ռեգրեսիայի մնացորդ-

ների  ∑ 𝑒𝑖
2 

  քառակուսիների գումարը: Միջինացնելով 𝑌𝑖 = 𝑎 + 𝑏𝑋𝑖 + 𝜀𝑖 

դիտումներն ըստ՝  𝑖 = 1,… , 𝑛 ՝ կստանանք` 

𝐘 = 𝑎 + 𝑏𝐗̅ + 𝛆 ̅ ,                                         (11.28) 

որտեղ 

  𝛆̅ =
1

𝑛
 ∑𝜀𝑖 ∶

 

 

  

Այստեղից կստանանք` 

𝑦𝑖 = 𝑌𝑖 − 𝐘 = 𝑏𝑥𝑖 + (𝜀𝑖 − 𝛆̅): 

Որտեղից՝ 

 𝑒𝑖 = 𝑦𝑖 − 𝑏̂𝑥𝑖 = − (𝑏̂ − 𝑏)𝑥𝑖 + (𝜀𝑖 − 𝛆̅)   և                         (11.29) 
 

 

∑𝑒𝑖
2

 

 

= (𝑏̂ − 𝑏)
2
∑𝑥𝑖

2

 

 

+∑(𝜀𝑖 − 𝛆̅)
2 − 2

 

 

(𝑏̂ − 𝑏)∑𝑥𝑖

 

 

(𝜀𝑖 − 𝛆̅): 

 

Այժմ հաշվենք  E(∑ 𝑒𝑖
2 

 ) մաթեմատիկական սպասումը:  

Ունենք՝  

E ((𝑏̂ − 𝑏)
2
∑𝑥𝑖

2

 

 

) = (∑𝑥𝑖
2

 

 

)var (𝑏̂) = (∑𝑥𝑖
2

 

 

) 
𝜎2

∑𝑥𝑖
2 = σ

2, 

 

E(∑(𝜀𝑖 − 𝛆̅)
2

 

 

) = E(∑𝜀𝑖
2 − 𝑛(𝛆̅)2

 

 

) = 𝑛σ2 − 𝑛 var (𝛆̅)2 = (𝑛 − 1) σ2: 

 

Այնուհետև (տե՛ս (11.11))՝ 

E((𝑏̂ − 𝑏)∑𝑥𝑗

 

 

(𝜀𝑗 − 𝛆̅)) = E((∑𝜔𝑖𝜀𝑖

 

 𝑖

)(∑𝑥𝑗(𝜀𝑗 − 𝛆̅)

 

 𝑗

)) = 
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= E(∑𝜔𝑖𝑥𝑗𝜀𝑖𝜀𝑗
𝑖,𝑗

) − E((∑𝜔𝑖𝜀𝑖

 

𝑖

) 𝛆̅(∑𝑥𝑗

 

𝑗

)) =∑(𝜔𝑖𝑥𝑖E(𝜀𝑖
2)) = 

 

 

= σ2∑𝜔𝑖

 

 

𝑥𝑖 = σ
2: 

Այսպիսով՝  

E(∑𝑒𝑖
2

 

 

) = (𝑛 − 2) σ2, 

և որպես σ2 ցրվածքի գնահատական վերցնելով (11.27)-ում սահաման-

ված  𝕤2 վիճականին՝ կստանանք` E(𝕤2) = σ2:  
 

Ունակություն  

 

        Թեորեմ 11.4:  Դիցուք բավարարվում են  H 1. և  H 2. պայմանները, և 
 

 var (∑𝑒𝑖
2

 

 

) = o(𝑛2):                                       (11.30) 

Այդ դեպքում 𝕤2 = (𝕤𝑛
2)𝑛≥1-ն ունակ գնահատական է 𝜎2պարամետրի 

համար՝ 

𝕤𝑛
2
P
→ σ2 ,       𝑛 → ∞ : 

Ա պ ա ց ու ց ու մ:  Քանի որ 

var(𝕤𝑛
2) =

1

(𝑛 − 2)2
 var (∑𝑒𝑖

2

 

 

), 

ապա (11.30) պայմանից հետևում է, որ var(𝕤𝑛
2) → 0, երբ 𝑛 → ∞: Հաշվի 

առնելով E(𝕤𝑛
2) = σ2 հատկությունը (թեորեմ 11.3-ը) և ունակության հայ-

տանիշը (տե՛ս [15]-ի հետևանք 5.21-ը)՝ կստանանք` 𝕤𝑛
2
P
→ σ2, երբ  𝑛 → ∞:      

Դիտողություն 11.3: Քանի որ գործնականում ռեգրեսիայի 𝜀𝑖 սխալ-

ների σ2 ցրվածքը անհայտ է, ապա, վերցնելով որպես դրա գնահատական 

𝕤2 մնացորդային ցրվածքը, կարելի է ստանալ նվազագույն քառակու-
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սիների գնահատականների var(𝑎̂) և var(𝑏̂) ցրվածքների և cov(𝑎̂, 𝑏̂) 

կովարիացիայի գնահատականները (տե՛ս լեմմա 11.2)`  

 

𝕤𝑎̂
2 ∶= var(𝑎̂)̂ =

𝕤2

𝑛
∙  
∑𝑋𝑖

2

∑𝑥𝑖
2  = 𝕤

2 (
1

𝑛
 + 
(𝑿̅)2

∑𝑥𝑖
2),                       (11.31) 

 

 𝕤𝑏̂
2 ∶= var(𝑏̂)̂ = 

𝕤2

∑𝑥𝑖
2  ,                                          (11.32) 

 

  cov(𝑎̂, 𝑏̂)̂ = −
𝕤2𝐗̅

∑ 𝑥𝑖
2 ∶                                             (11.33) 

 

       § 11.4.  Ռեգրեսիայի գործակիցների Ճշմարտանմանության  

        մաքսիմումի գնահատականները 

 

Դիցուք 𝑌𝑖 = 𝑎 + 𝑏𝑋𝑖 + 𝜀𝑖, 𝑖 = 1,… , 𝑛 մոդելը բավարարում է H 1., H 3. 

պայմանները, այսինքն՝ ունենք նորմալ գծային ռեգրեսիոն մոդել: Գտնենք 

𝑎, 𝑏 և σ2 պարամետրերի ճշմարտանմանության մաքսիմումի գնահատա-

կանները: 

      Թեորեմ 11.5: Նորմալ գծային ռեգրեսիոն մոդելի  𝑎, 𝑏 և  σ2 պարա-

մետրերի 𝑎̂𝑀𝐿, 𝑏̂𝑀𝐿 և  𝜎2̂𝑀𝐿 ՃՄ գնահատականները հետևյալ վիճականի-

ներն են` 

𝑎̂𝑀𝐿 = 𝐘 − 𝑏̂𝑀𝐿𝐗̅ = 𝑎̂ ,    𝑏̂𝑀𝐿 = 
∑𝑥𝑖𝑦𝑖
∑𝑥𝑖

2 = 𝑏̂ ,  

 

σ2̂𝑀𝐿 =
1

𝑛
 ∑𝑒𝑖

2

 

 

= (1 −
2

𝑛
) 𝕤2 

 𝑎̂-ը  և  𝑏̂-ը ՆՔ գնահատականներն են, իսկ  𝕤2-ն՝  մնացորդային ցրվածքը: 
 

       Ա պ ա ց ու ց ու մ: Քանի որ դիտվող մոդելի 𝜀𝑖 , 𝑖 = 1,… , 𝑛 սխալներն 

անկախ պատահական մեծություններ են, ապա անկախ են նաև 𝑌𝑖 ~ 

~ ℕ(𝑎 + 𝑏𝑋𝑖 , σ
2) դիտումները: 𝐘 = ‖𝑌1, … , 𝑌𝑛‖

𝑇 նմուշի ճշմարտանմանու-

թյան ֆունկցիան կլինի` 
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𝑓𝛉(𝐘) =∏𝑓𝛉(𝑌𝑖) = (2𝜋)
− 𝑛 2⁄ (σ2)− 𝑛 2⁄ exp {− 

1

2σ2
∑(𝑌𝑖 − 𝑎 − 𝑏𝑋𝑖)

2

 

 

} ,

 

 

 

որտեղ 𝛉 = (𝑎, 𝑏,  σ2)-ն անհայտ պարամետրն է, իսկ 𝑓𝛉(𝑦𝑖)-ն՝ 𝑌𝑖 պատա-

հական մեծությունների խտության ֆունկցիան: Այստեղից լոգարիթմա-

կան ճշմարտանմանության ֆունկցիայի համար կստանանք հետևյալ 

ներկայացումը` 

𝐿𝛉(𝐘) = ln 𝑓𝛉(𝐘) = − 
𝑛

2
 ln(2𝜋) −

𝑛

2
 ln σ2 −

1

2σ2
∑(𝑌𝑖 − 𝑎 − 𝑏𝑋𝑖)

2

 

 

, 

ուստի մաքսիմումի անհրաժեշտ պայմաններից կստանանք`  

 

{
 
 
 

 
 
 
𝜕𝐿𝛉(𝐘)

𝜕𝑎
=
1

𝜎2
∑(𝑌𝑖 − 𝑎 − 𝑏𝑋𝑖) = 0,

 

 

                                                  

𝜕𝐿𝛉(𝐘)

𝜕𝑏
=
1

𝜎2
∑𝑋𝑖(𝑌𝑖 − 𝑎 − 𝑏𝑋𝑖) = 0,

 

 

                           (11.34) 

𝜕𝐿𝛉(𝐘)

𝜕σ2
= − 

𝑛

2σ2
 +  

1

2𝜎4
∑(𝑌𝑖 − 𝑎 − 𝑏𝑋𝑖)

2 = 0:

 

 

                          

 

Այս համակարգի առաջին երկու հավասարումից կստանանք (11.1) 

նորմալ հավասարումների համակարգը, որի լուծումը տալիս է 

𝑏̂𝑀𝐿 =
∑𝑥𝑖𝑦𝑖
∑𝑥𝑖

2 = 𝑏̂,   𝑎̂𝑀𝐿 = 𝐘 − 𝑏̂𝑀𝐿𝐗̅ = 𝑎̂ ,  

որտեղ 𝑎̂𝑀𝐿-ը և 𝑏̂𝑀𝐿-ը 𝑎 և 𝑏 պարամետրերի ՃՄ գնահատականներն են, 

իսկ  𝑎̂-ը  և  𝑏̂-ը՝ նվազագույն քառակուսիների գնահատականները: 

Մյուս կողմից՝ (11.34) համակարգի երրորդ հավասարումից կստա-

նանք՝  

σ2̂𝑀𝐿 =
1

𝑛
∑(𝑌𝑖 − 𝑎̂ − 𝑏̂𝑋𝑖)

2
 

 

= 
1

𝑛
∑𝑒𝑖

2

 

 

= (1 −
2

𝑛
) 𝕤2,  

σ2 պարամետրի ՃՄ գնահատականը: Պարզ է, որ  E(𝑏̂𝑀𝐿) = 𝑏 և E(𝑎̂𝑀𝐿) =

= 𝑎, այսինքն՝ 𝑏̂𝑀𝐿-ը և 𝑎̂𝑀𝐿-ը անշեղ գնահատականներ են 𝑏 և 𝑎 պարա-

մետրերի համար, իսկ  E(𝜎2̂𝑀𝐿) = (1 −
2

𝑛
) 𝜎2: 
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       § 11.5.  Դետերմինացիայի գործակից 

 

Գտնենք (11.9) ռեգրեսիոն մոդելի 𝐘 միջինի նկատմամբ կախյալ փո-

փոխականի վարիացիան: Համաձայն (11.6)-ի, (11.8)-ի և (11.25)-ի՝ ունենք` 

 ∑(𝑌𝑖 − 𝐘)
2 =∑𝑦𝑖

2 =∑(𝑒𝑖 + 𝑏̂𝑥𝑖)
2
=

 

 

 

 

 

 

∑(𝑦̂𝑖)
2 +

 

 

∑𝑒𝑖
2

 

 

+ 2𝑏̂∑𝑥𝑖

 

 

𝑒𝑖: 

                                                                                              (11.35) 

Մյուս կողմից, համաձայն (11.7)-ի, կստանանք` 

 ∑𝑥𝑖

 

 

𝑒𝑖 =∑𝑥𝑖

 

 

(𝑦𝑖 − 𝑏̂𝑥𝑖) =∑(𝑥𝑖𝑦𝑖 − 𝑏̂𝑥𝑖
2) = 0,               (11.36)

 

 

 

այնպես որ, հաշվի առնելով (11.5) պայմանը, (11.35)-ը կներկայացվի հե-

տևյալ ձևով՝ 

 ∑(𝑌𝑖 − 𝐘)
2 =∑(𝑌̂𝑖 − 𝐘)

2
+ ∑(𝑌𝑖 − 𝑌̂𝑖)

2
:                   (11.37) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

       Այս վերլուծությունը նշանակում է, որ 𝑌 փոփոխականի ամբողջ 

վարիացիան`   
 

𝑇𝑆𝑆 ∶= ∑(𝑌𝑖 − 𝐘)
2 (𝑇𝑜𝑡𝑎𝑙 𝑆𝑢𝑚 𝑜𝑓 𝑆𝑞𝑢𝑎𝑟𝑒𝑠),

 

 

 

𝑌𝑖  

𝑌 

𝑋 0 𝑋𝑖 

𝑌𝑖 − 𝐘̅ 

𝐘̅ 

𝑌̂𝑖  

𝑌𝑖 − 𝑌̂𝑖  

𝑌̂𝑖 − 𝐘̅ 

 
 

 

 

 

 
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տրոհվում է երկու մասի` 𝑌̂ = 𝑎̂ + 𝑏̂𝑋 ռեգրեսիայի հավասարումով  

«բացատրվող»`   

𝑅𝑆𝑆 ∶= ∑(𝑌̂𝑖 − 𝐘)
2

 

 

 (𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑆𝑢𝑚 𝑜𝑓 𝑆𝑞𝑢𝑎𝑟𝑒𝑠) 

և ռեգրեսիայի հավասարումով  «չբացատրվող»  
 

  𝐸𝑆𝑆 ∶=∑(𝑌𝑖 − 𝑌̂𝑖)
2
 (𝐸𝑟𝑟𝑜𝑟 𝑆𝑢𝑚 𝑜𝑓 𝑆𝑞𝑢𝑎𝑟𝑒𝑠):  

 

 

 

Ռեգրեսիայի հավասարումով «բացատրվող» ամբողջ վարիացիայի մասը` 
 

𝑅2 =
𝑅𝑆𝑆

𝑇𝑆𝑆
=  
∑ (𝑌̂𝑖 − 𝐘)

2 
 

∑(𝑌𝑖 − 𝐘)
2 

 

 ,                                  (11.38) 

 

կոչվում է դետերմինացիայի գործակից: 

Դիտողություն 11.4:  Հեշտ է տեսնել (տե՛ս § 10.5), որ  

 𝑅2 =
∑(𝑦̂𝑖)

2 
 

∑𝑦𝑖
2 = (𝑏̂)

2 ∑𝑥𝑖
2

∑𝑦𝑖
2 = 

(∑𝑥𝑖𝑦𝑖)
2

∑𝑥𝑖
2∑𝑦𝑖

2 = 𝑟𝑋,𝑌
2  , 

այսինքն՝ դետերմինացիայի գործակիցը հավասար է 𝑋 և 𝑌 փոփոխական-

ների նմուշային կորելյացիայի գործակցի քառակուսուն: 

Դիտողություն 11.5: (11.37) վարիացիայի վերլուծությունը կարելի է 

ներկայացնել նաև 

𝑇𝑆𝑆 = 𝑅𝑆𝑆 + 𝐸𝑆𝑆 
 

տեսքով, որտեղից դետերմինացիայի գործակիցը կլինի հավասար 
 

 𝑅2 = 1 −
𝐸𝑆𝑆

𝑇𝑆𝑆
∶                                            (11.39) 

 

(11.39) ներկայացումից հետևում է, որ 
 

 0 ≤ 𝑅2 ≤ 1: 
 

 𝑅2 = 1 պայմանը նշանակում է, որ 𝑌𝑖 = 𝑌̂𝑖,  𝑖 = 1,… , 𝑛, այսինքն՝ բոլոր 

դիտվող (𝑋𝑖,  𝑌𝑖) կետերը պատկանում են ռեգրեսիայի ուղղին (պարզա-

գույն մոտարկում):  
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Մյուս եզրային արժեքը` 𝑅2 = 0, նշանակում է, որ 𝑌̂𝑖 = 𝐘, 𝑖 = 1,… , 𝑛, 

այսինքն՝ համեմատությամբ 𝑌̂𝑖 = 𝐘, 𝑖 = 1,… , 𝑛 ակնհայտ կանխատեսում-

ների ռեգրեսիան ոչ մի լրացուցիչ տեղեկատվություն չի տալիս, 𝑋𝑖-երի 

արժեքները չեն լավացնում կանխատեսումները:  

 

        Լեմմա 11.3:  Տեղի ունի մնացորդների քառակուսիների գումարի 

համար հետևյալ ներկայացումը՝ 
 

𝐸𝑆𝑆 = ∑(𝑌𝑖 − 𝑌̂𝑖)
2
=∑𝑌𝑖

2 −

 

 

𝑎̂∑𝑌𝑖 −

 

 

 𝑏̂∑𝑋𝑖𝑌𝑖 ∶

 

 

 

 

 

 

Ա պ ա ց ու ց ու մ: Ներկայացնենք մնացորդների քառակուսիների 

գումարը հետևյալ ձևով՝ 

∑(𝑌𝑖 − 𝑌̂𝑖)
2
=∑(𝑌𝑖 − (𝑎̂ + 𝑏̂𝑋𝑖))

2
=

 

 

 

 

 

 = ∑𝑌𝑖
2 −∑𝑌𝑖(𝑎̂ + 𝑏̂𝑋𝑖) +∑(𝑎̂ + 𝑏̂𝑋𝑖)(𝑎̂ + 𝑏̂𝑋𝑖 − 𝑌𝑖):

 

 

 

 

 

 

 

Մյուս կողմից՝ 
 

∑(𝑎̂ + 𝑏̂𝑋𝑖)(𝑎̂ + 𝑏̂𝑋𝑖 − 𝑌𝑖) = 

 

 

=∑𝑌̂𝑖(𝑌̂𝑖 − 𝑌𝑖) =

 

 

∑(𝑌̂𝑖 − 𝐘)(𝑌̂𝑖 − 𝑌𝑖) +

 

 

∑𝐘(𝑌̂𝑖 − 𝑌𝑖)

 

 

: 

Այժմ նկատելով, որ 
 

∑(𝑌𝑖 − 𝐘)
2

 

 

=∑(𝑌𝑖 − 𝑌̂𝑖)
2
 + 2∑(𝑌𝑖 − 𝑌̂𝑖)(𝑌̂𝑖 − 𝐘) +

 

 

 ∑(𝑌̂𝑖 − 𝐘)
2

 

 

,

 

 

 

(11.37) պայմանից կստանանք` 
 

∑(𝑌𝑖 − 𝑌̂𝑖)(𝑌̂𝑖 − 𝐘) = 0:

 

 

 

 

Բացի այդ (տե՛ս (11.26))՝ 

∑𝐘(𝑌̂𝑖 − 𝑌𝑖) =

 

 

− 𝐘∑𝑒𝑖 = 0:
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Այսպիսով՝ 

 ∑(𝑎̂ + 𝑏̂𝑋𝑖)(𝑎̂ + 𝑏̂𝑋𝑖 − 𝑌𝑖)  = 0 

 

 

 և 

 ∑(𝑌𝑖 − 𝑌̂𝑖)
2
=

 

 

∑𝑌𝑖
2 −∑𝑌𝑖(𝑎̂ + 𝑏̂𝑋𝑖)

 

 

 

 

=∑𝑌𝑖
2 −

 

 

𝑎̂∑𝑌𝑖 −

 

 

 𝑏̂∑𝑋𝑖𝑌𝑖 ∶

 

 

 

Օրինակ 11.2: Ըստ օրինակ 11.1-ի տվյալների, հաշվի առնելով նաև, 

որ  ∑𝑌𝑖
2 = 526, գտնենք 𝑅2 դետերմինացիայի գործակիցը, 𝕤2 մնացորդային 

ցրվածքն ու  𝕤𝑎̂
2   և  𝕤𝑏̂

2  վիճականիները: 

Համաձայն լեմմա 11.3-ի՝ ունենք` 

𝐸𝑆𝑆 =∑𝑌𝑖
2 −

 

 

𝑎̂∑𝑌𝑖 −

 

 

 𝑏̂∑𝑋𝑖𝑌𝑖 ∶

 

 

  

Հետևաբար (տե՛ս օրինակ 11.1-ը)՝  
 

𝐸𝑆𝑆 = 526 + 4 ∙ 64 −
4

3
∙ 492 = 126, 

 

𝑇𝑆𝑆 =∑(𝑌𝑖 − 𝐘)
2 =∑𝑌𝑖

2 −

 

 

𝑛(𝐘)2
 

 

= 526 − 256 = 270, 

այնպես որ՝ 
 

𝑅𝑆𝑆 = 𝑇𝑆𝑆 − 𝐸𝑆𝑆 = 270 − 126 = 144: 
 

Այստեղից՝ 
 

 𝑅2 =
𝑅𝑆𝑆

𝑇𝑆𝑆
=
144

270
≈ 0.5333, 𝕤2 =

1

𝑛 − 2
 𝐸𝑆𝑆 =

126

14
= 9, 

 

որտեղից` 

𝕤𝑎̂
2 =

𝕤2

𝑛
 ∙

∑𝑋𝑖
2

∑𝑋𝑖
2 −𝑛(𝐗̅)2

=
9

16
∙

657

657 − 16 ∙ 36
=
73

16
= 4.5625, 

 

 𝕤𝑏̂
2 =

𝕤2

∑𝑋𝑖
2 −𝑛(𝐗̅)2

≈ 0.1111:  
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       Խնդիրներ  

 

11.5. Դիցուք 𝑌𝑖 = 𝑎 + 𝑏𝑋𝑖 + 𝜀𝑖, 𝑖 = 1,… , 𝑛 ռեգրեսիոն մոդելի պարա-

մետրերը գնահատվում են նվազագույն քառակուսիների եղանակով: 

Ցույց տալ, որ  𝑅2 դետերմինացիայի գործակցի համար ճիշտ են հետևյալ 

համարժեք ներկայացումները՝  
 

ա)  𝑅2 = 
(∑ 𝑥𝑖𝑦𝑖)

2

∑𝑥𝑖
2∑𝑦𝑖

2  ,   բ)  𝑅
2 = 𝑏̂ 

∑ 𝑥𝑖𝑦𝑖
∑𝑦𝑖

2  ,   գ)  𝑅
2 =

(∑ 𝑦̂𝑖𝑦𝑖)
2

(∑ 𝑦̂𝑖
2)(∑𝑦𝑖

2)
 ,  

 

դ)  𝑅2 = 1 −
∑𝑒𝑖

2

∑𝑦𝑖
2 ∶ 

 

11.6. Դիցուք տրված է հաստատունի վրա ռեգրեսիոն մոդելը՝ 
 

𝑌𝑖 = 𝑎 + 𝜀𝑖,  𝑖 = 1, … , 𝑛: 
 

ա) Գտնել 𝑎 պարամետրի նվազագույն քառակուսիների գնահատա-

կանը, դրա ցրվածքը և ռեգրեսիայի 𝜀𝑖 սխալների σ2 = var(𝜀𝑖) ցրվածքի 

անշեղ գնահատականը, 
 

բ) գտնել  𝑅2 դետերմինացիայի գործակիցը: 
 

Պատասխան՝ ա)  𝑎̂ = 𝐘, var(𝑎̂) =
σ2

𝑛
 , σ2̂ = 

1

𝑛−1
∑(𝑌𝑖 − 𝐘)

2, բ)  𝑅2  
 = 0: 

 

11.7. Տրված է առանց ազատ անդամի գծային ռեգրեսիոն մոդելը՝ 

𝑌𝑖 = 𝑏𝑋𝑖 + 𝜀𝑖 , 𝑖 = 1, … , 𝑛: 

Գտնել 𝑏 պարամետրի նվազագույն քառակուսիների գնահատա-

կանը, դրա ցրվածքը և ռեգրեսիայի 𝜀𝑖 սխալների σ2 = var(𝜀𝑖) ցրվածքի 

անշեղ գնահատականը: 
 

Պատասխան՝  𝑏̂ =
∑𝑋𝑖𝑌𝑖

∑𝑋𝑖
2 , var(𝑏̂) =

σ2

∑𝑋𝑖
2  , σ

2̂ = 
1

𝑛−1
∑ 𝑒𝑖

2 ∶ 
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       Թեորեմ 11.6: Դիցուք 

𝑌𝑖 = 𝑎 + 𝑏𝑋𝑖 + 𝜀𝑖  ,   𝑖 = 1,… , 𝑛 

գծային ռեգրեսիոն մոդելը բավարարում է H 1. և H 3. պայմանները: Այդ 

դեպքում 

𝜒𝑛−2
2 =

(𝑛 − 2)𝕤2

𝜎2
=
1

𝜎2
∑𝑒𝑖

2

 

 

 ~ ℍ2(𝑛 − 2)  

վիճականին ունի  (𝑛 − 2) ազատության աստիճաններով  𝝌𝟐 բաշխում : 

Ա պ ա ց ու ց ու մ:  Ռեգրեսիայի 𝑒𝑖 մնացորդների  

𝑒𝑖 = 𝑦𝑖 − 𝑏̂𝑥𝑖 = 𝜀𝑖 − 𝛆̅ − (𝑏̂ − 𝑏)𝑥𝑖  

ներկայացումից (տե՛ս (11.29)), հաշվի առնելով (11.11)-ը, կստանանք` 
 

 𝑒𝑖 = 𝜀𝑖 − 𝛆̅ − (∑𝜔𝑗𝜀𝑗 

 

 

)𝑥𝑖 :                                     (11.40) 

Այժմ կատարելով հետևյալ նշանակումները (տե՛ս դիտողություն 11.1-ը)՝  
 

𝐱 = ‖𝑥1, … , 𝑥𝑛‖
𝑇 ,   𝛆 = ‖𝜀1, … , 𝜀𝑛‖

𝑇 ,   𝐞 = ‖𝑒1, … , 𝑒𝑛‖
𝑇, 

 

𝛚= ‖𝜔1, … , 𝜔𝑛‖
𝑇 ,  1 = ‖1,… , 1⏟  

𝑛

‖

𝑇

 , 

ներկայացնենք՝ 

‖𝛆̅, … , 𝛆̅⏟  
𝑛

‖

𝑇 

= ‖
1 𝑛 … 1 𝑛⁄⁄
……………
1 𝑛 … 1 𝑛⁄⁄

‖𝛆 =
1

𝑛
 (𝟏 ∙ 𝟏𝑇) 𝛆 , 

 

‖(∑𝜔𝑗𝜀𝑗 

 

 

) 𝑥1, …,   (∑𝜔𝑗𝜀𝑗 

 

 

)𝑥𝑛‖

𝑇

= 𝐱 𝛚𝑻𝛆 : 

 

Այսպիսով, (11.40)-ը վեկտորական տեսքով կներկայացվի հետևյալ ձևով՝ 

 𝐞 = (𝔼𝑛 −
1

𝑛
(𝟏 ∙ 𝟏𝑇) − 𝐱 𝛚𝑻)𝛆 = 𝕄𝛆                          (11.41) 

 

(այստեղ 𝔼𝑛-ը 𝑛 -չափանի միավոր մատրից է): 

Հեշտ է ստուգել, որ  
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𝕄=𝔼𝑛 −
1

𝑛
(𝟙 ∙ 𝟙𝑇) − 𝐱 𝛚𝑻 

 

մատրիցը  համաչափ է  և  իդեմպոտենտ   (պրոեկցիոն  մատրից է)  (տե՛ս  

Հ. 13), այսինքն` 
 

𝕄𝑇 = 𝕄  և  𝕄2 = 𝕄: 

Հետևաբար,  𝜒𝑛−2
2  վիճականին կներկայացվի հետևյալ ձևով՝ 

𝜒𝑛−2
2 =

(𝑛 − 2)𝕤2

σ2
=
1

σ2
 ∑𝑒𝑖

2

 

 

=
1

σ2
 (𝐞𝑻𝐞 ) =

1

σ2
 (𝕄𝛆 )𝑇(𝕄𝛆 ) = 

 

 =
1

σ2
 𝛆 𝑇(𝕄𝑇𝕄)𝛆 = (

𝛆 

σ
)
𝑇

𝕄(
𝛆 

σ
),  

որտեղ 

 
𝛆 

σ
 ~ ℕ𝑛(𝟎, 𝔼𝑛) (𝟎 = ‖0,… ,0⏟  

𝑛

‖

𝑇

)  

 

ստանդարտ նորմալ բաշխում ունեցող պատահական վեկտոր է (տե՛ս  

H 3. պայմանը):  

Այժմ գտնենք 𝕄 = ‖𝑚𝑖𝑗‖𝑖,𝑗=1
𝑛

մատրիցի ռանգը: 𝕄 մատրիցի անկյունա-

գծի տարրերն ունեն հետևյալ տեսք՝ 

𝑚𝑖𝑖 = 1 − 
1

𝑛
 − 𝜔𝑖𝑥𝑖 ,   𝑖 = 1,… , 𝑛:  

Համաձայն պնդում Հ. 14-ի և լեմմա 11.1-ի՝ ունենք` 

rank (𝕄) =  tr (𝕄) =∑𝑚𝑖𝑖 = 𝑛 − 1 −∑𝜔𝑖𝑥𝑖

 

 

 

 

= 𝑛 − 2: 

Կիրառելով այնուհետև թեորեմ Հ. 45-ը՝ վերջնական կստանանք`  

𝜒𝑛−2
2 =

(𝑛 − 2)𝕤2

𝜎2
= (
𝛆 

σ
)
𝑇

𝕄(
𝛆 

σ
) ~ ℍ2(𝑛 − 2):          
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       Խնդիր  

 

1.8.  Դիցուք 
 

 σ2̂𝑀𝐿 =
1

𝑛
 ∑𝑒𝑖

2  և   𝕤2 =
1

𝑛 − 2
 ∑𝑒𝑖

2

 

 

 

 

 

                         

(11.9) նորմալ ռեգրեսիոն մոդելի 𝜀𝑖 սխալների σ2 ցրվածքի գնահատա-

կաններն են: Գտնել այդ գնահատականների ցրվածքները:  
 

Պատասխան՝ 

v𝑎r ( σ2̂𝑀𝐿) =
2(𝑛 − 2)

𝑛2
 σ4 ,   v𝑎r (𝕤2) =

2

𝑛 − 2
 σ4 ∶ 

 

       § 11.7.  Նվազագույն քառակուսիների գնահատականների 

       հատկությունները  

 

Դիցուք դիտարկվում է (11.9) նորմալ գծային ռեգրեսիոն մոդելը, 

որտեղ 

𝑌𝑖  ~ ℕ(𝑎 + 𝑏𝑋𝑖 ,  𝜎
2),       𝑖 = 1, … , 𝑛:  

 

Քանի որ 𝑎̂ և 𝑏̂ գնահատականները գծայնորեն արտահայտվում են 𝑌𝑖-

երի միջոցով (տե՛ս (11.11-ը) և (11.12-ը)), ուստի նրանք նույնպես ունեն 

նորմալ բաշխումներ՝ 

𝑎̂ ~ ℕ(𝑎, σ𝑎̂
2),   𝑏̂ ~ ℕ(𝑏, σ𝑏̂

2), 

որտեղ  

σ𝑎̂
2 = var(𝑎̂ ) =

σ2

𝑛
 ∙
∑𝑋𝑖

2

∑𝑥𝑖
2 ,   σ𝑏̂

2 =  var(𝑏̂) =
σ2

∑𝑥𝑖
2 ∶ 

Այստեղից հետևում է, որ 

 𝑍(𝑎) =
𝑎̂ − 𝑎

σ𝑎̂
 ~ ℕ(0,1),   𝑍(𝑏) =

𝑏̂ − 𝑏

σ𝑏̂
 ~ ℕ(0,1):              (11.42) 
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        Թեորեմ 11.7: Եթե (11.9) ռեգրեսիոն մոդելը բավարարում է H 1. և H 3.  

պայմանները, ապա 
 

 𝑇𝑛−2(𝑎) =
𝑎̂ − 𝑎

𝕤𝑎̂
 ~ 𝕋(𝑛 − 2),   𝑇𝑛−2(𝑏) =

𝑏̂ − 𝑏

𝕤𝑏̂
 ~ 𝕋(𝑛 − 2)       (11.43) 

 

վիճականիներն ունեն (𝑛 − 2) ազատության աստիճաններով Ստյու-

դենտի (t -) բաշխում, որտեղ 
 

 𝕤𝑎̂
2 =

𝕤2

𝑛
 ∙  
∑𝑋𝑖

2

∑𝑥𝑖
2 = 𝕤

2 (
1

𝑛
+
(𝑿̅)2

∑𝑥𝑖
2), 

 

 𝕤𝑏̂
2 =

𝕤2

∑𝑥𝑖
2  ,   𝕤

2 =
1

𝑛 − 2
 ∑𝑒𝑖

2

 

 

∶ 

        Թեորեմն ապացուցելու համար անհրաժեշտ է հետևյալ լեմման՝ 

        Լեմմա 11.4: Եթե (11.9) ռեգրեսիոն մոդելը բավարարում է H.1 և H 3. 

պայմանները, ապա 𝑎̂ և 𝑏̂ նվազագույն քառակուսիների գնահատական-

ները  𝕤2 վիճականուց անկախ են:  

Ա պ ա ց ու ց ո ւմ: Քանի որ 𝕤2 վիճականին ֆունկցիա է ռեգրեսիայի 𝑒𝑖  

մնացորդներից, ապա բավական է ապացուցել 𝑎̂ և 𝑏̂ վիճականիների ան-

կախությունը 𝑒𝑖 մնացորդներից: Համաձայն (11.11), (11.12) և (11.40) ներ-

կայացումների՝ 𝑎̂ ( 𝑏̂ ) գնահատականը և 𝑒𝑖-երը գծային ձևով են կախված 

ռեգրեսիայի 𝜀𝑖 սխալներից, ուստի նրանք ունեն համատեղ նորմալ բաշ-

խում: Հետևաբար՝ 𝑎̂ և 𝑏̂ վիճականիները կլինեն անկախ 𝑒𝑖 մնացորդնե-

րից, եթե նրանք լինեն չկորելյացված 𝑒𝑖 -ից:  

Գտնենք cov (𝑒𝑖, 𝑎̂ ) և cov (𝑒𝑖, 𝑏̂ ): Նշանակելով  𝜂 = ∑ 𝜔𝑗𝜀𝑗 ՝
 
  (11.40)  

մնացորդը  կբերվի 𝑒𝑖 = 𝜀𝑖 − 𝛆̅ − 𝜂𝑥𝑖  տեսքի, այնպես որ, համաձայն (11.10)-

ի և լեմմա 11.1-ի, ունենք` 

cov (𝑒𝑖, 𝑏̂) = E(𝜀𝑖 − 𝛆̅ − 𝜂𝑥𝑖)(𝑏 + 𝜂) = E(𝜀𝑖𝜂 − 𝛆̅𝜂 − 𝑥𝑖𝜂
2) = 

= σ2 (𝜔𝑖 −
1

𝑛
 ∑𝜔𝑗 − 𝑥𝑖

 

 

∑𝜔𝑗
2

 

 

) = σ2 (𝜔𝑖 −
𝑥𝑖
∑𝑥𝑗

2) = 0: 

Մյուս կողմից (տե՛ս (11.28)-ը)՝ 
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cov (𝑒𝑖, 𝑎̂ ) = cov (𝑒𝑖, 𝐘 − 𝑏̂ 𝐗̅) = cov (𝑒𝑖, 𝑎 + 𝑏𝐗̅ + 𝛆
 ̅) − 𝐗 ̅cov (𝑒𝑖, 𝑏̂) = 

 

 = E[(𝜀𝑖 − 𝛆̅ − 𝜂𝑥𝑖)𝛆̅] = E(𝜀𝑖𝛆̅) − E(𝛆̅)
2 − 𝑥𝑖E(𝜂𝛆̅) = 

 

=
σ2

𝑛
 − 
σ2

n
 − 
𝑥𝑖
𝑛
 E [(∑𝜔𝑗𝜀𝑗

 

 

)(∑𝜀𝑘

 

 

)] = − 
𝑥𝑖σ

2

𝑛
 ∑𝜔𝑗 = 0:

 

 

         

 Թ ե ո ր ե մ ի  ա պ ա ց ու ց ու մ ը:  Թեորեմ 11.6-ից ունենք` 

𝕤

𝜎
 = √

1

𝑛 − 2
 𝜒𝑛−2
2 ∶ 

Օգտվելով այնուհետև (11.42)-ից, 𝕤𝑎̂ σ𝑎̂ = 𝕤 σ⁄⁄  հավասարությունից, 

լեմմա 11.4-ից և [15]-ի թեորեմ 2.13-ից՝ կստանանք` 
 

𝑇𝑛−2(𝑎) =
(𝑎̂ − 𝑎) σ𝑎̂⁄

𝕤 σ⁄
=

𝑍(𝑎)

√ 1
𝑛 − 2 𝜒𝑛−2

2

 ~ 𝕋(𝑛 − 2), 

և նմանապես՝ 

𝑇𝑛−2(𝑏) =
(𝑏̂ − 𝑏) σ𝑏̂⁄

𝕤 σ⁄
=

𝑍(𝑏)

√ 1
𝑛 − 2

 𝜒𝑛−2
2

 ~ 𝕋(𝑛 − 2):           

        

       § 11.8.  Ռեգրեսիայի պարամետրերի վերաբերյալ  

       միջակայքային գնահատում և վարկածների ստուգում  

 

1. Դիցուք (11.9) ռեգրեսիոն մոդելի 𝜀𝑖 ~ ℕ(0,  σ
2) սխալների σ2 ցրված-

քը հայտնի է: (11.42) պայմանից բխում է, որ 𝑍(𝑎)-ն և 𝑍(𝑏)-ն կենտրոնա-

կան վիճականիներ են (տե՛ս [15]-ի սահմանում 7.5-ը), ուստի տվյալ 𝛼 

նշանակալիության մակարդակով ճիշտ են հետևյալ պայմանները` 

P (|
𝑎̂ − 𝑎

σ𝑎̂
| < 𝑧𝛼 2⁄ ) = 1 − 𝛼,   P (|

𝑏̂ − 𝑏

σ𝑏̂
| < 𝑧𝛼 2⁄ ) = 1 − 𝛼, 
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որտեղից 𝑎 և 𝑏 պարամետրերի 𝛾 = 1 − 𝛼 մակարդակով վստահության 

միջակայքերը կլինեն` 

P(𝑎̂ − σ𝑎̂ ∙ 𝑧𝛼 2⁄ < 𝑎 < 𝑎̂ + σ𝑎̂ ∙ 𝑧𝛼 2⁄ ) = 1 − 𝛼, 

 

P(𝑏̂ − σ𝑏̂ ∙ 𝑧𝛼 2⁄ < 𝑏 < 𝑏̂ + σ𝑏̂ ∙ 𝑧𝛼 2⁄ ) = 1 − 𝛼: 

Այստեղից՝ ℍ0 ∶  𝑎 = 𝑎0 վարկածն ընդդեմ ℍ1 ∶  𝑎 ≠ 𝑎0 երկընտրան-

քայինի ստուգող 𝛼 մակարդակով կրիտիկական տիրույթը կունենա հե-

տևյալ տեսքը՝ 
 

𝒳1𝛼 = {(𝐱, 𝐲): |𝑧(𝑎0)| > 𝑧𝛼 2⁄ },  

որտեղ  𝑧(𝑎0)-ն, 𝑍(𝑎0) վիճականու թվային արժեքն է: 

Նման ձևով ℍ0: 𝑏 = 𝑏0 վարկածն ընդդեմ ℍ1: 𝑏 ≠ 𝑏0 երկընտրանքա-

յինի ստուգող հայտանիշը կունենա 

𝒳1𝛼 = {(𝐱, 𝐲): |𝑧(𝑏0)| > 𝑧𝛼 2⁄ } 

կրիտիկական տիրույթ:  

2. Անհայտ σ2 ցրվածքի դեպքում կօգտվենք 𝑇𝑛−2(𝑎) և 𝑇𝑛−2(𝑏) 

կենտրոնական վիճականիներից (տե՛ս (11.43)), որտեղից տվյալ 𝛼 նշա-

նակալիության մակարդակի համար կստանանք` 

P(|
𝑎̂ − 𝑎

𝕤𝑎̂
| < 𝑡𝛼 2⁄ (𝑛 − 2)) = 1 − 𝛼  և  P (|

𝑏̂ − 𝑏

𝕤𝑏̂
| < 𝑡𝛼 2⁄ (𝑛 − 2)) = 1 − 𝛼, 

այնպես որ, 𝑎 և 𝑏 պարամետրերի 1 − 𝛼 մակարդակով վստահության 

միջակայքերի համար կունենանք` 

P (𝑎̂ − 𝕤𝑎̂ ∙ 𝑡𝛼 2⁄ (𝑛 − 2) < 𝑎 < 𝑎̂ + 𝕤𝑎̂ ∙ 𝑡𝛼 2⁄ (𝑛 − 2)) = 1 − 𝛼, 
 

P (𝑏̂ − 𝕤𝑏̂ ∙ 𝑡𝛼 2⁄ (𝑛 − 2) < 𝑏 < 𝑏̂ + 𝕤𝑏̂ ∙ 𝑡𝛼 2⁄ (𝑛 − 2)) = 1 − 𝛼: 
 

ℍ0: 𝑎 = 𝑎0 վարկածն ընդդեմ ℍ1: 𝑎 ≠ 𝑎0 երկընտրանքայինի ստուգող 

𝛼  մակարդակով կրիտիկական տիրույթը կունենա հետևյալ տեսքը՝ 

𝒳1𝛼 = {(𝐱, 𝐲): |𝑡𝑛−2(𝑎0)| > 𝑡𝛼 2⁄ (𝑛 − 2)}:  
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Նման ձևով ℍ0 ∶  𝑏 = 𝑏0 վարկածն ընդդեմ ℍ1 ∶  𝑏 ≠ 𝑏0 երկընտրան-

քայինի ստուգող հայտանիշի կրիտիկական տիրույթը կլինի  

𝒳1𝛼 = {(𝐱, 𝐲): |𝑡𝑛−2(𝑏0)| > 𝑡𝛼 2⁄ (𝑛 − 2)} 

բազմությունը (այստեղ 𝑡𝑛−2(𝑎0) (𝑡𝑛−2(𝑏0))-ն, 𝑇𝑛−2(𝑎0) (𝑇𝑛−2(𝑏0)) վիճա-

կանու թվային արժեքն է): 

Առավել հետաքրքրություն է ներկայացնում ℍ0 : 𝑏 = 0 վարկածի 

ստուգման խնդիրը, որի հերքումը տվյալ 𝛼 մակարդակով նշանակում է, 

որ 𝑋 փոփոխականը (գործոնը) նշանակալի ազդեցություն ունի կախյալ 𝑌 

փոփոխականի վրա: Այդ վարկածը ստուգող հայտանիշի վիճականին 

նշանակվում է 

 𝕥 = 𝑇𝑛−2(0) =
𝑏̂

𝕤𝑏̂
 ~ 𝕋(𝑛 − 2)                           (11.44) 

և կոչվում 𝕥 վիճականի:  

3. (11.9) ռեգրեսիոն մոդելի 𝜀𝑖 ~ ℕ(0, σ2) սխալների  σ2 ցրվածքի հա-

մար երկկողմանի միջակայքային գնահատականը ստանալու համար 

կօգտվենք թեորեմ 11.6-ից, որտեղից տվյալ 𝛼 նշանակալիության մակար-

դակի համար կստանանք` 

P(𝜒1−𝛼 2⁄
2 (𝑛 − 2) <

(𝑛 − 2)𝕤2

σ2
< 𝜒𝛼 2⁄

2 (𝑛 − 2)) = 1 − 𝛼, 

ուստի  σ2 ցրվածքի 𝛾 = 1 − 𝛼 մակարդակով վստահության միջակայքի 

համար կունենանք` 

P(
(𝑛 − 2)𝕤2

𝜒𝛼 2⁄
2 (𝑛 − 2)

< 𝜎2 <
(𝑛 − 2)𝕤2

𝜒1−𝛼 2⁄
2 (𝑛 − 2)

) = 1 − 𝛼: 

ℍ0: σ
2 = σ0

2 վարկածն ընդդեմ ℍ1 ∶  σ
2 ≠ σ0

2 երկընտրանքայինի ստու-

գող 𝛼 մակարդակով կրիտիկական տիրույթը կունենա հետևյալ տեսքը՝ 

𝒳1𝛼 = {(𝐱
 , 𝐲 ): 

(𝑛 − 2)𝕤2

σ0
2 < 𝜒1−𝛼 2⁄

2 (𝑛 − 2) ∪  
(𝑛 − 2)𝕤2

σ0
2 > 𝜒𝛼 2⁄

2 (𝑛 − 2)}: 
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Օրինակ 11.3: Ըստ օրինակ 11.1 -ում բերված տվյալերի, ենթադրելով 

ռեգրեսիոն մոդելի նորմալությունը, գտնենք 𝛼 = 0.05 նշանակալիության 

մակարդակով 𝑎, 𝑏 և 𝜎2 պարամետրերի երկկողմանի միջակայքային 

գնահատականները և ստուգենք  ℍ0:  𝑎 = 0  ընդդեմ ℍ1: 𝑎 ≠ 0, ℍ0
′  : 𝑏 = 1 

ընդդեմ ℍ1
′  : 𝑏 > 1  և  ℍ0

′′ : 𝜎2 = 10 ընդդեմ ℍ1
′′ : 𝜎2 < 10 երկընտրանքային-

ների վարկածները: 

Համաձայն § 11.8 (կետ 2-ի)՝ 𝑎 և 𝑏 պարամետրերի համար ստացվել 

են 1 −  𝛼 մակարդակով հետևյալ երկկողմանի վստահության միջակայ-

քերը՝  

𝑎 ∈ (𝑎̂  ∓ 𝕤𝑎̂  𝑡𝛼 2⁄ (𝑛 − 2))  և  𝑏 ∈ (𝑏̂  ∓ 𝕤𝑏̂ 𝑡𝛼 2⁄ (𝑛 − 2)), 

որտեղ, ըստ օրինակներ 11.1-ի և 11.2-ի, ունենք` 

𝑎̂ = − 4,   𝑏̂ =
4

3
≈ 1.33,   𝕤𝑎̂ = 0.3425,   𝕤𝑏̂ =

1

3
≈ 0.3333,  𝑡0.025(14) = 2.145: 

Այնպես որ, 

𝑎− = 𝑎̂ − 𝕤𝑎̂  𝑡𝛼 2⁄ (𝑛 − 2) = − 4.7347,   𝑎
+ = 𝑎̂ + 𝕤𝑎̂  𝑡𝛼 2⁄ (𝑛 − 2) = − 3.2653, 

𝑎 ∈ (− 4.7347,−3.2653), 
 

և  ℍ0 : 𝑎 = 0  վարկածը կհերքվի, քանի որ 0 ∉ (−4.7347,−3.2653): 

 Մյուս կողմից` 

𝑏− = 𝑏̂ − 𝕤𝑏̂  𝑡𝛼 2⁄ (𝑛 − 2) = −1.53,   𝑏
+ = 𝑏̂ + 𝕤𝑏̂ 𝑡𝛼 2⁄ (𝑛 − 2) = 2.048, 

𝑏 ∈ (− 1.53, 2.048): 
 

Ստուգենք ℍ0
′  : 𝑏 = 1 վարկածն ընդդեմ ℍ1

′  : 𝑏 > 1 երկընտրանքայինի: 

Վարկածը ստուգող 𝛼 նշանակալիության մակարդակով կրիտիկական 

տիրույթն է 

𝒳1𝛼 = {(𝒙, 𝐲):  𝑡𝑛−2(𝑏0) > 𝑡𝛼(𝑛 − 2)}:  

Այստեղ՝ 
 

 𝑡𝑛−2(𝑏0) =
𝑏̂−𝑏0

𝕤𝑏̂
=
4 3 −1⁄

1 3⁄
= 1,  իսկ  𝑡0.05(14) = 1.761, հետևաբար՝  ℍ0

′   վար- 
 

կածը չի հերքվում: 
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Այժմ գտնենք 𝜎2 ցրվածքի վստահության միջակայքը՝ 
 

σ2 ∈ (
(𝑛 − 2)𝕤2

𝜒𝛼 2⁄
2 (𝑛 − 2)

,   
(𝑛 − 2)𝕤2

𝜒1−𝛼 2⁄
2 (𝑛 − 2)

), 

 

որտեղ  𝜒0.025
2 (14) = 21.92, 𝜒0.975

2 (14) = 5.629, 𝕤2 = 9:  

Այստեղից՝ 
 

 (σ2)− = 5.7482,  (σ2)+ = 22.3841, 
 

σ2 ∈ (5.7482, 22.3841): 

Ստուգենք ℍ0
′′ : σ2 = 10 վարկածն ընդդեմ ℍ1

′′ : σ2 < 10 երկընտրան-

քայինի: Վարկածը ստուգող 𝛼 նշանակալիության մակարդակով կրիտի-

կական տիրույթն է` 

𝒳1𝛼 = {(𝐱, 𝐲): 
(𝑛 − 2)𝕤2

σ0
2 < 𝜒1−𝛼

2 (𝑛 − 2)}, 

որտեղ 

(𝑛 − 2)𝕤2

σ0
2 = 12.6,   𝜒0.95

2 (14) = 6.571,  

 

այնպես որ,  ℍ0
′′  վարկածը չի հերքվում: 

 

       Խնդիր 

 

       11.9.   Դիցուք տրված է H 1. և H 3. պայմանները բավարարող  

𝑌𝑖 = 𝑎 + 𝑏 (𝑋𝑖 −
1

𝑛
 ∑𝑋𝑖

 

 

) + 𝜀𝑖 ,       𝑖 = 1,… , 𝑛 

նորմալ գծային ռեգրեսիոն մոդելը, որի 𝜀𝑖 սխալներն ունեն հայտնի σ2 

ցրվածք:  

Գտնել 𝑎 և 𝑏 պարամետրերի նվազագույն քառակուսիների գնահա-

տականները և 1 − 𝛼 մակարդակով վստահության միջակայքերը: 
 

Պատասխան՝ 

 𝑎̂ = 𝐘  ̅,   𝑏̂ =
𝑆𝑋𝑌
2

𝑆𝑋
2 ,   𝑎 ∈ (𝑎̂  ∓ 

σ

√𝑛
 𝑧𝛼 2⁄ ) ,   𝑏 ∈ (𝑏̂ ∓

σ

√𝑛
 √

∑ 𝑋𝑖
2 

 

∑(𝑋𝑖 − 𝐗)
2 

 

 𝑧𝛼 2⁄  ) :
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       § 11.9.  Ցրվածքների վերլուծություն (դիսպերսիոն անալիզ) 

      ռեգրեսիոն մոդելներում (𝑨𝑵𝑶𝑽𝑨) 

 

§ 11.8-ում դիտարկված (11.9) ռեգրեսիոն մոդելի 𝑋 գործոնի նշանա-

կալիության ստուգումը (ℍ0: 𝑏 = 0) կարելի է կատարել նաև ցրվածքների 

վերլուծության եղանակով: 

Համաձայն (11.42)-ի և թեորեմ 11.6-ի՝ 

𝑍(𝑏) =
𝑏̂ − 𝑏

σ𝑏̂
 =
𝑏̂ − 𝑏

σ
 (∑𝑥𝑖

2

 

 

)

1 2⁄

~ ℕ(0,1)   (𝑍2(𝑏) ~ ℍ2(1)), 

 

𝜒𝑛−2
2 =

(𝑛 − 2)𝕤2

σ2
 =

1

σ2
∑𝑒𝑖

2

 

 

 ~ ℍ2(𝑛 − 2), 

 

և քանի որ 𝕤2 և 𝑏̂ վիճականիներն անկախ են (լեմմա 11.4), ապա, ըստ 

թեորեմ 2.9-ի (տե՛ս [15])`  
 

𝐹 =
𝑍2(𝑏)

1
𝑛 − 2 𝜒𝑛−2

2
=
(𝑏̂ − 𝑏)

2
∑𝑥𝑖

2

1
𝑛 − 2 

∑ 𝑒𝑖
2
 ~ 𝕊(1, 𝑛 − 2): 

 

𝑭 -վիճականին ունի 1 և (𝑛 − 2) ազատության աստիճաններով Ֆիշեր 

– Սնեդեկորի ( 𝑭­) բաշխում:  

Այժմ, ℍ0 ∶  𝑏 = 𝑏0 վարկածն ընդդեմ ℍ1 ∶  𝑏 ≠ 𝑏0 երկընտրանքայինի 

ստուգման համար կիրառենք կենտրոնական 𝐹 − վիճականին: Եթե ճիշտ 

է ℍ0 վարկածը, ապա 
 

𝐹0 ∶=
(𝑏̂ − 𝑏0)

2
∑ 𝑥𝑖

2 
 

1
𝑛 − 2 

∑ 𝑒𝑖
2 

 

 ~ 𝕊(1, 𝑛 − 2): 

 𝐹 −վիճականին ունի 1 և (𝑛 − 2) ազատության աստիճաններով Ֆիշեր - 

Սնեդեկորի (𝑭-) բաշխում, այնպես որ, 𝛼 նշանակալիության մակար-

դակով կրիտիկական տիրույթը կլինի  

𝒳1𝛼 = {(𝐱, 𝐲): 𝑓0 > 𝑆 𝛼(1, 𝑛 − 2)} 
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բազմությունը, որտեղ 𝑆𝛼 (1, 𝑛 − 2) -ը` 1 և (𝑛 − 2) ազատության աստի-

ճաններով 𝑭- բաշխման 𝛼 մակարդակով կրիտիկական արժեքն է, 

𝑓0 = 𝐹0(𝜔0):  

(11.9) ռեգրեսիոն մոդելի 𝑋 գործոնի նշանակալիությունը ստուգելու 

համար դիտարկվում է ℍ0 ∶  𝑏 = 0 վարկածն ընդդեմ ℍ1 ∶  𝑏 ≠ 0 մրցող 

վարկածի: ℍ0 վարկածը բավարարվելու դեպքում 𝐹 – վիճականին 

կընդունի հետևյալ տեսքը` 
 

𝐹0 =
(𝑏̂)

2
∑𝑥𝑖

2

1
𝑛 − 2

 ∑ 𝑒𝑖
2 

 

 ~ 𝕊(1, 𝑛 − 2): 

Նկատի ունենալով 𝑦̂𝑖 = 𝑏̂𝑥𝑖 ներկայացումը (տե՛ս (11.8)-ը)՝ 𝐹 – վիճա-

կանին կգրվի հետևյալ համարժեք տեսքով՝ 

 𝐹0 =
∑(𝑦̂𝑖)

2 
 

1
𝑛 − 2

 ∑ 𝑒𝑖
2 

 

=
𝑅𝑆𝑆 1⁄

𝐸𝑆𝑆 (𝑛 − 2)⁄
 ,                             (11.45)  

որտեղ 𝐸𝑆𝑆 մնացորդային անդամը գտնվում է հետևյալ ներկայացումից` 

𝐸𝑆𝑆 = 𝑇𝑆𝑆 − 𝑅𝑆𝑆 =∑𝑦𝑖
2 − (𝑏̂)

2
∑𝑥𝑖

2

 

 

 

 

∶ 

 𝐹 −վիճականին գտնելու համար անհրաժեշտ հաշվարկները բերվում են 

ցրվածքների վերլուծության հետևյալ աղյուսակում ( ANOVA – table )․ 

Ցրվածքների վերլուծության ( ANOVA ) աղյուսակ  

Ցրվածքների 

աղբյուրը 

 

1 

Շեղումների 

քառակուսիների 

գումարը 

2 

Ազատությունների 

աստիճանը 

 

3 

Շեղումների 

քառակուսիների 

միջինը 

4 

Գործոն (𝑋)  

 

 Մնացորդ (𝑒) 

  

 𝑅𝑆𝑆 = (𝑏̂)
2
∑𝑥𝑖

2

 

 

 

 𝐸𝑆𝑆 =  ∑𝑒𝑖
2

 

 

 

1 

 
𝑛 − 2 

 

𝑅𝑆𝑆 1⁄  
 

𝐸𝑆𝑆 (𝑛 − 2)⁄  
 

Ընդհանուր  

ցրվածքը 
 𝑇𝑆𝑆 =  ∑𝑦𝑖

2

 

 

 
𝑛 − 1 

  
𝐹0 =

𝑅𝑆𝑆 1⁄

𝐸𝑆𝑆 (𝑛 − 2)⁄
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(3)-րդ սյունակում բերված ազատությունների աստիճանը կարելի է 

ինտուիտիվ բացատրել ինչպես համապատասխան արտահայտություն-

ներում մասնակցող անկախ անդամների թիվը: Այսպես,   𝑇𝑆𝑆 = ∑ 𝑦𝑖
2 

  

վիճականին որոշվում է  (𝑛 − 1) անկախ անդամներով՝ հաշվի առնելով 

∑ 𝑦𝑖
 
  = 0  պայմանը (տե՛ս (11.5)): Նման ձևով  𝐸𝑆𝑆 =  ∑ 𝑒𝑖

2 
   վիճականին 

ունի (𝑛 − 2) ազատության աստիճան շնորհիվ ∑ 𝑒𝑖 =
 
 ∑ 𝑥𝑖

 
 𝑒𝑖 = 0 պայմա-

նի (տե՛ս (11.26)  և (11.36)): Վերջապես,  𝑅𝑆𝑆 = (𝑏̂)
2
∑ 𝑥𝑖

2   
  վիճականին  

կախված է միայն մեկ 𝑏̂ անդամից: 

Ամփոփելով վերոհիշյալը՝ կարելի է եզրակացնել, որ 𝑋 գործոնի նշա-

նակալիությունը ստուգելու համար գոյություն ունի երկու եղանակ․ առա-

ջինը հիմնված է 𝕥- վիճականու վրա (տե՛ս (11.44)-ը), իսկ երկրորդը՝ 𝑭 – 

վիճականու: Հեշտ է, սակայն, տեսնել, որ այս երկու եղանակները համար-

ժեք են, քանի որ  𝑭 = 𝕥𝟐:  

Պարզվում է, որ այս խնդիրը լուծելու համար գոյություն ունի նաև եր-

րորդ տարբերակը, որը հիմնված է կորելյացիայի գործակցի գաղափարի 

վրա: 

        Լեմմա 11.5: 𝑭 - և  𝕥 - վիճականիները (տե՛ս (11.44) և (11.45)) ունեն 

հետևյալ համարժեք ներկայացումներ՝ 

𝕥 =
𝑟 √𝑛 − 2

√1 − 𝑟2
   և   𝐹0 = (𝑛 − 2)

𝑅2

1 − 𝑅2
 , 

 որտեղ 𝑅2-ն դետերմինացիայի գործակիցն է, իսկ 𝑟 = 𝑟𝑋,𝑌-ը՝ նմուշային  

կորելյացիայի գործակիցը: 

Ա պ ա ցու ց ու մ: Համաձայն ամբողջ վարիացիայի (11.37) վերլուծու-

թյան՝ ունենք` 

∑𝑦𝑖
2

 

 

=∑𝑒𝑖
2  + 

 

 

∑(𝑦̂𝑖)
2

 

 

,  

այնպես որ՝ 𝑅2 դետերմինացիայի գործակիցը կընդունի 

𝑅2 =
∑(𝑦̂𝑖)

2 
 

∑𝑦𝑖
2 =

∑(𝑦̂𝑖)
2 

 

∑𝑒𝑖
2 + ∑(𝑦̂𝑖)

2 
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տեսքը, որտեղից` 

1

𝑅2
= 1 + 

∑ 𝑒𝑖
2

∑(𝑦̂𝑖)
2 

 
∶  

Մյուս կողմից, օգտվելով (11.45)-ից կստանանք`  

𝐹0 = (𝑛 − 2)
𝑅2

1 − 𝑅2
∶ 

Այնուհետև, նկատի ունենալով, որ  𝐹0 = 𝕥
2  (𝕥 =  

𝑏̂

𝕤𝑏̂
), կստանանք` 

𝕥 = √𝐹0 =
𝑟 √𝑛 − 2

√1 − 𝑟2
 , 

որտեղ  𝑟2 = 𝑅2 :           ∎ 

Համաձայն թեորեմ 10.14-ի՝ կորելյացիայի գործակցի նշանակալիու-

թյունը (ℍ0 : 𝜌 = 0) ստուգող հայտանիշը համարժեք է (11.9) ռեգրեսիոն 

մոդելում 𝑋 գործոնի նշանակալիությունը (ℍ0 : 𝑏 = 0) ստոգող հայտանի-

շին (տե՛ս լեմմա 11.5):  
 

Օրինակ 11.4: Ըստ օրինակ 11.1-ում բերված տվյալների (տե՛ս նաև 

օրինակ 11.2-ը)՝ կազմենք ցրվածքային վերլուծության աղյուսակը և 0.05 

մակարդակով ստուգենք (11.9) գծային ռեգրեսիոն մոդելում 𝑋 գործոնի 

նշանակալիությունը (ℍ0 : 𝑏 = 0):  

Ցրվածքների 

աղբյուրը 

 

1 

Շեղումների 

քառակուսիների 

գումարը 

2 

Ազատություննե-

րի աստիճանը 

 

3 

Շեղումների 

քառակուսիների 

միջինը 

4 

Գործոն (𝑋) 

 

Մնացորդ (𝑒) 

 𝑅𝑆𝑆 = 144 
 

𝐸𝑆𝑆 = 126 

1 

 

14 

 

𝑅𝑆𝑆 1⁄ = 144 
 

𝐸𝑆𝑆 (𝑛 − 2) = 9⁄  
 

Ընդհանուր  

ցրվածքը 

 
 𝑇𝑆𝑆 =  270 

 

 

15 

  

𝐹0 =
𝑅𝑆𝑆 1⁄

𝐸𝑆𝑆 (𝑛 − 2)⁄
= 16 
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ℍ0 ∶ 𝑏 = 0 վարկածը ստուգող 𝐹 - վիճականու արժեքը, համաձայն 

աղյուսակի, հավասար է 16-ի: Մյուս կողմից՝ 1 և 14 ազատության աստի-

ճաններով 𝑭 – բաշխման 0.05 նշանակալիության մակարդակով կրիտի-

կական արժեքն է 𝑆0.05(1, 14) = 4.6 (տե՛ս աղյուսակ Ա 5-ը): Այսպիսով, 

𝐹0 > 𝑆0.05(1, 14)  և ℍ0 վարկածը հերքվում է, այսինքն՝ 𝑋 փոփոխականն 

ունի նշանակալի ազդեցություն 𝑌 փոփոխականի վրա: 

Կիրառելով 𝕥 − վիճականու վրա հիմնված համարժեք հայտանիշը՝ 

կստանանք` 

𝕥 =
𝑏̂

𝕤𝑏̂
=
4 3⁄

1 3⁄
= 4 (կամ 𝕥 = √𝐹0 = 4),  

և քանի որ  𝑡0.025(14) = 2.145, ապա  𝕥 > 𝑡0.05(14) և ℍ0 վարկածը նույն-

պես հերքվում է: 

Մյուս կողմից՝ 0.05 նշանակալիության մակարդակով ℍ0 : 𝑏 = 0 վար-

կածը ստուգող հայտանիշի կրիտիկական տիրույթն ունի հետևյալ տեսքը 

(տե՛ս դիտողություն 10.20)՝ 

𝒳1𝛼 = {(𝐱, 𝐲): |𝑡 | > 𝑡𝛼 2⁄ (𝑛 − 2)} =

{
 

 

 (𝐱, 𝐲): |𝑟| >
𝑡𝛼 2⁄ (𝑛 − 2)

√𝑡𝛼 2⁄
2 (𝑛 − 2) + 𝑛 − 2

 

}
 

 

∶ 

Քանի որ  𝑟 = √𝑅2 = √0.5333 = 0.7303  և  

𝑡𝛼 2⁄ (𝑛 − 2)

√𝑡𝛼 2⁄
2 (𝑛 − 2) + 𝑛 − 2

=
2.145

√18.601
= 0.497, 

 

ապա ℍ0 : 𝑏 = 0 վարկածը հերքվում է: 

      

       Խնդիր 

 

11.10. Հետազոտվում է քիմիական նյութի որոշ (𝑌) բնութագրիչի կախ-

վածությունը նրա (𝑋) ջերմաստիճանից (տվյալները բերվում են կոդա-

վորված)`  
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𝑋 − 5 − 4 − 3 − 2 − 1 0 1 2 3 4 5 

𝑌 1 5 4 7 10 8 9 13 14 13 18 
 

ա) ստանալ ( 𝑋𝑖, 𝑌𝑖) կետերի նվազագույն քառակուսիների մինիմումի 

իմաստով լավագուն գծային մոտարկումը,  

բ) ենթադրելով 𝑌𝑖 = 𝑎 + 𝑏𝑋𝑖 + 𝜀𝑖 մոդելի նորմալությունը՝ կառուցել 

ցրվածքային վերլուծության (𝐀𝐍𝐎𝐕𝐀) աղյուսակը և ստուգել 0.05 մակար-

դակով ռեգրեսիայի նշանակալիությունը, 

գ) գտնել 0.95 մակարդակով թեքվածության գործակցի վստահության 

միջակայքը: 
 

Պատասխան՝  ա) 𝑌̂ = 9.2727 + 1.4364 𝑋,  
 

 բ) նշանակալի է,  
 

 գ) 𝑏 ∈ (1.105, 1.768):  

 

       § 11.10.  Կանխատեսումներ ռեգրեսիոն մոդելներում 

 

1. Դիցուք (11.9) ռեգրեսիոն մոդելին բավարարող ( 𝑋𝑖, 𝑌𝑖 ),  𝑖 = 1,… , 𝑛 

նմուշի միջոցով պահանջվում է կանխատեսել 𝑋 փոփոխականի որոշակի 

𝑋0 արժեքին համապատասխանող և այդ մոդելին բավարարող 𝑌0 պա-

տահական մեծության  𝑚0 = E(𝑌0)  միջինը:  

Դիտարկենք կետային և միջակայքային կանխատեսումների խնդիր-

ները: 

 

Կետային կանխատեսում  

 

 𝑚̂0 կետային գնահատականը (կանխատեսումը) փնտրվում է ըստ  

𝑌𝑖-երի գծային  անշեղ գնահատականների 

ℒ𝑚0
0 (𝐘) = {𝑚̂0 ∶  𝑚̂0 =∑𝑐𝑖𝑌𝑖  ,   𝑐𝑖 ∈ ℛ,   E

𝑛

𝑖=1

(𝑚̂0) = 𝑚0} 

դասում այնպես, որ այն լինի օպտիմալ (ունենա նվազագույն ցրվածքը):
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        Թեորեմ 11.8: H 1. և H 3. պայմանների դեպքում (11.9) ռեգրեսիոն 

մոդելին բավարարող ( 𝑋𝑖, 𝑌𝑖), 𝑖 = 1,… , 𝑛 նմուշի միջոցով որոշակի 𝑋0 

արժեքին համապատասխանող 𝑌0 = 𝑎 + 𝑏𝑋0 + 𝜀0 պատահական մեծու-

թյան 𝑚0 = E(𝑌0) միջինի համար օպտիմալ ℒ𝑚0
0 (𝐘) դասում 𝑚̂0 գնա-

հատականը (կանխատեսումը) կլինի 

𝑚̂0 = 𝑎̂ + 𝑏̂𝑋0 

վիճականին, որտեղ  𝑎̂-ը և 𝑏̂-ը, 𝑎 և 𝑏 պարամետրերի նվազագույն քառա-

կուսիների գնահատականներն են, իսկ 𝑚̂0-ի ցրվածքն ունի հետևյալ 

տեսքը՝ 

var(𝑚̂0) ∶= σ𝑚̂0
2 = σ2 (

1

𝑛
+
(𝑋0 − 𝐗̅)

2

∑(𝑋𝑖 − 𝐗̅)
2 

 

 ): 

Ա պ ա ց ու ց ու մ: Ենթադրվում է, որ 𝜀0 պատահական սխալը բավա-

րարում է 

E(𝜀0) = 0,   var(𝜀0) = σ
2,   cov(𝜀0, 𝜀𝑖) = 0,   𝑖 = 1,… , 𝑛 

պայմանները, այնպես որ՝  

𝑚0 = E(𝑌0) = 𝑎 + 𝑏𝑋0:                                        (11.46) 

Գտնենք 𝑚0-ի համար օպտիմալ ℒ𝑚0
0 (𝐘) դասում 𝑚̂0 գնահատականը:  

Դիցուք 

 𝑚̂0 =∑𝑐𝑖𝑌𝑖 ,   որտեղ

 

 

 𝑌𝑖 = 𝑎 + 𝑏𝑋𝑖 + 𝜀𝑖,    

ուստի 

 𝑚̂0 = 𝑎∑𝑐𝑖 + 𝑏

 

 

∑𝑐𝑖𝑋𝑖 + 

 

 

∑𝑐𝑖𝜀𝑖  և 

 

 

 

 E(𝑚̂0) = 𝑎∑𝑐𝑖 + 𝑏

 

 

∑𝑐𝑖𝑋𝑖  

 

 

:                                (11.47)  

Այստեղից՝ 𝑚̂0 ∈ ℒ𝑚0
0 (𝐘) այն և միայն այն դեպքում, երբ  

 ∑𝑐𝑖

 

 

= 1  և  ∑𝑐𝑖𝑋𝑖 = 𝑋0 

 

 

:                                  (11.48)  

Իրոք, (11.46), (11.47) և E(𝑚̂0) = 𝑚0 պայմաններից հետևում է, որ  
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𝑎 (∑𝑐𝑖

 

 

− 1) + 𝑏 (∑𝑐𝑖𝑋𝑖 − 𝑋0 

 

 

) = 0,   𝑎 ∈ ℛ,   𝑏 ∈ ℛ: 

Այժմ վերցնելով 𝑎 = 1, 𝑏 = 0 և այնուհետև 𝑎 = 0, 𝑏 = 1՝ կստանանք 

(11.48)-ը: 

       Մյուս կողմից՝ ունենք` 

 var(𝑚̂0) = E(𝑚̂0 − E𝑚̂0)
2 = E(∑𝑐𝑖𝜀𝑖

 

 

)

2

= σ2∑𝑐𝑖
2 ∶       (11.49) 

 

 

 

Կազմենք Լագրանժի ֆունկցիան՝ 

𝐻(𝑐1, … , 𝑐𝑛; 𝜆, 𝜇) =∑𝑐𝑖
2  − 𝜆

 

 

(∑𝑐𝑖

 

 

− 1) − 𝜇 (∑𝑐𝑖𝑋𝑖 − 𝑋0 

 

 

) , 

և ներկայացնենք պայմանական մաքսիմումի անհրաժեշտ պայմանները՝ 
 

 

{
 
 
 

 
 
 
𝜕𝐻

𝜕𝑐𝑖
= 2𝑐𝑖 − 𝜆 − 𝜇𝑋𝑖 = 0,   𝑖 = 1,… , 𝑛,                                    

 
𝜕𝐻

𝜕𝜆
= −(∑𝑐𝑖

 

 

− 1) = 0,                                         (11.50) 

𝜕𝐻

𝜕𝜇
= −(∑𝑐𝑖𝑋𝑖 − 𝑋0 

 

 

) = 0:                                                  

  

(11.50) համակարգի առաջին 𝑛 հավասարումներից՝ կստանանք` 

2∑𝑐𝑖 = 𝑛𝜆 +  𝜇

 

 

∑𝑋𝑖 ,

 

 

 

որտեղից, հաշվի առնելով (𝑛 + 1)-րդ հավասարումը, կունենանք` 

𝜆 =
2

𝑛
 −  𝜇 𝐗̅: 

Տեղադրելով այս արժեքը (11.50) համակարգի առաջին 𝑛 հավասա-

րումների մեջ՝ կստանանք` 

 𝑐𝑖 =
𝜆

2
 + 
𝜇

2
 𝑋𝑖 =

1

𝑛
 + 
𝜇

2
 𝑥𝑖   (𝑥𝑖 = 𝑋𝑖 − 𝑿̅):                    (11.51) 
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Բազմապատկելով այս հավասարումների ձախ և աջ մասերը 𝑋𝑖-

երով, այնուհետև գումարելով և հաշվի առնելով համակարգի (𝑛 + 2)-րդ 

հավասարումը՝ կստանանք` 

∑𝑐𝑖𝑋𝑖 = 𝐗̅ + 

 

 

𝜇

2
 ∑𝑥𝑖𝑋𝑖

 

 

= 𝑋0 , 

որտեղից՝ 

 𝜇 = 2 
𝑋0 − 𝐗̅

∑𝑥𝑖𝑋𝑖
= 2 

𝑋0 − 𝐗̅

∑𝑥𝑖
2 :                                       (11.52) 

Այսպիսով, (11.51) -ից և (11.52)-ից ունենք` 

 𝑐𝑖 =
1

𝑛
 + 
𝜇

2
 𝑥𝑖 =

1

𝑛
 + 
𝑥𝑖(𝑋0 − 𝐗̅)

∑𝑥𝑗
2  ,                            (11.53) 

որտեղից, նկատի ունենալով (տե՛ս լեմմա 11.2-ի ապացուցումը), որ  

𝑏̂ = ∑𝜔𝑖𝑌𝑖

 

 

, 

կստանանք՝ 

𝑚̂0 =∑𝑐𝑖𝑌𝑖 =∑(
1

𝑛
 + 
𝑥𝑖(𝑋0 − 𝐗̅)

∑𝑥𝑗
2 )

 

 

 

 

𝑌𝑖 = 

 = 𝐘 + 
𝑋0∑𝑥𝑖𝑌𝑖
∑𝑥𝑗

2 −
 𝐗̅∑𝑥𝑖𝑌𝑖
∑𝑥𝑗

2 = 

= 𝐘 +  𝑋0∑𝜔𝑖𝑌𝑖

 

 

− 𝐗̅∑𝜔𝑖𝑌𝑖

 

 

= (𝐘 − 𝑏̂𝐗̅) + 𝑏̂𝑋0 = 𝑎̂ + 𝑏̂𝑋0: 

Այսպիսով, 𝑚0 = E(𝑌0) միջինի լավագույն (օպտիմալ) գծային անշեղ 

գնահատականը  𝑎̂  + 𝑏̂𝑋0 վիճականին է:  

Համաձայն (11.49)-ի, (11.53)-ի և լեմմա 11.1-ի՝ 𝑚̂0 գնահատականի 

var(𝑚̂0) ցրվածքի համար կստանանք` 

var(𝑚̂0) = σ𝑚̂0
2 = σ2∑𝑐𝑖

2 = 

 

 

σ2∑(
1

𝑛
 + 
𝑥𝑖(𝑋0 − 𝐗̅)

∑ 𝑥𝑗
2 )

2 

 

= 

= σ2(
1

𝑛
+
2

𝑛
 (𝑋0 − 𝐗̅) 

∑ 𝑥𝑖
 

∑𝑥𝑗
2 + (𝑋0 − 𝐗̅)

2
∑𝑥𝑗

2

(∑𝑥𝑗
2)
2) = 
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= σ2 (
1

𝑛
+
(𝑋0 − 𝐗̅)

2

∑𝑥𝑗
2 ):                                        (11.54)  

Միջակայքային կանխատեսում 

Այժմ գտնենք  𝑋0 արժեքին համապատասխանող 𝑌0 պատահական 

մեծության 𝑚0 = E(𝑌0) միջինի 𝛾 = 1 − 𝛼 մակարդակով վստահության 

միջակայքը:  

        Թեորեմ 11.9: Դիցուք (11.9) ռեգրեսիոն մոդելը բավարարում է  H 1. և 

H 3. պայմանները: Այդ դեպքում 
 

𝕥 =
𝑚̂0 −𝑚0
𝑠𝑚̂0

 ~ 𝕋(𝑛 − 2) 

 

վիճականին ունի (𝑛 − 2) ազատության աստիճաններով Ստյուդենտի 

բաշխում, որտեղ 

𝑠𝑚̂0
2 = 𝕤2 (

1

𝑛
+ 
(𝑋0 − 𝐗̅)

2

∑𝑥𝑗
2  ): 

Ա պ ա ց ու ց ու մ: Համաձայն թեորեմ 11.8-ի՝ 𝑚0 միջինի օպտիմալ կե-

տային գնահատականը 𝑚̂0 = 𝑎̂  + 𝑏̂𝑋0 վիճականին է, որտեղ նվազագույն 

քառակուսիների 𝑎̂ և 𝑏̂ գնահատականները բաշխված են նորմալ օրենքով 

(տե՛ս (11.42)-ը), և քանի որ  E(𝑚̂0) = 𝑎 + 𝑏𝑋0, ապա 

 𝑚̂0 ~ ℕ(𝑎 + 𝑏𝑋0, σ𝑚̂0
2 ),                                    (11.55)  

որտեղ 

 σ𝑚̂0
2 = σ2 (

1

𝑛
+ 
(𝑋0 − 𝐗̅)

2

∑𝑥𝑗
2 ): 

(11.55)-ից հետևում է, որ 

𝜉0 =
𝑚̂0 −𝑚0
σ𝑚̂0

 ~ ℕ(0,1),   𝑚0 = E(𝑚̂0) = 𝑎 + 𝑏𝑋0: 

Մյուս կողմից՝ համաձայն թեորեմ 11.6-ի՝ 

𝜒𝑛−2
2 =

(𝑛 − 2)𝕤2

σ2
 ~ ℍ2(𝑛 − 2), 
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որտեղից, քանի որ 

 𝑚̂0 = 𝑎̂  + 𝑏̂𝑋0  և  𝕤
2 =

1

𝑛 − 2
 ∑𝑒𝑖

2

 

 

  

վիճականիներն անկախ են (տե՛ս լեմմա 11.4), հետևում է  

𝕥 =
𝜉0

√ 1
𝑛 − 2 ∙ 𝜒𝑛−2

2

 ~ 𝕋(𝑛 − 2): 

Մյուս կողմից,նկատի ունենալով,որ  
𝜎𝑚̂0
σ
=
𝑠𝑚̂0
𝕤
,կստանանք`  

 𝕥 =
(𝑚̂0 −𝑚0) σ𝑚̂0⁄

√𝕤2 σ2⁄
=
𝑚̂0 −𝑚0
𝑠𝑚̂0

∶      ∎      

Ըստ թեորեմ 11.9-ի՝ 𝑚0 = E(𝑌0) միջինի 𝛾 = 1 − 𝛼 մակարդակով 

վստահության միջակայքը կլինի` 

 P(𝑚̂0 − 𝑡𝛼 2⁄ (𝑛 − 2) 𝑠𝑚̂0 < 𝑚0 < 𝑚̂0 + 𝑡𝛼 2⁄ (𝑛 − 2) 𝑠𝑚̂0) = 1 − 𝛼 ∶  (11.56) 

2. Դիցուք ( 𝑋𝑖, 𝑌𝑖 ), 𝑖 = 1,… , 𝑛 նմուշը համապատասխանում է H 1. և     

H 3. պայմանները բավարարող (11.9) ռեգրեսիոն մոդելին: Ենթադրենք, 

բացի այդ, որ դիտված (𝑋0, 𝑌0) արժեքը նույնպես բավարարում է այդ 

մոդելին, այսինքն` 

 𝑌0 = 𝑎 + 𝑏𝑋0 + 𝜀0 ,                                          (11.57) 

որտեղ 𝜀0~ ℕ(0, 𝜎
2), և այն անկախ է 𝜀𝑖-երից՝ 𝑖 = 1,… , 𝑛: Այդ դեպքում 

կանխատեսվող 𝑌̂0 արժեքը կլինի (տե՛ս (11.4))՝ 

  𝑌̂0 = 𝑎̂ + 𝑏̂𝑋0 = 𝐘 + 𝑏̂𝑥0  (𝑥0 = 𝑋0 − 𝐗̅),                      (11.58) 

որտեղ 

 𝐘 = 𝑎 + 𝑏𝐗̅ + 𝛆̅  (𝛆̅ =
1

𝑛
 ∑𝜀𝑖

 

 

):                                  (11.59) 

(11.57)-ից և (11.59)-ից կստանանք` 
 

𝑌0 − 𝐘 = 𝑏𝑥0 + 𝜀0 − 𝛆̅, 
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որտեղից, օգտվելով (11.58)-ից, կանխատեսման սխալի համար կունե-

նանք` 

 𝑒0 = 𝑌0 − 𝑌̂0 = − (𝑏̂ − 𝑏)𝑥0 + 𝜀0 − 𝛆̅:                             (11.60) 

(11.60)-ից անմիջապես հետևում է, որ E(𝑒0) = 0, այսինքն՝ 𝑌̂0-ը E(𝑌0)-

ի համար, ըստ 𝑌𝑖-երի, գծային (տե՛ս (11.58)) անշեղ գնահատական է՝ 

E(𝑌̂0) = E(𝑌0): 

        Լեմմա 11.6: H 1. և  H 3. պայմանների դեպքում (11.9) մոդելին բավա-

րարող կամայական (𝑋0,𝑌0) զույգի համար  𝑌0 պատահական մեծության 

𝑌̂0 = 𝑎̂ + 𝑏̂𝑋0 կանխատեսման  𝑒0 սխալի ցրվածքը հավասար է 
 

σ𝑒0
2 ∶= var(𝑒0 ) = σ

2 (1 +
1

𝑛
+
𝑥0
2

∑𝑥𝑖
2 ): 

Ա պ ա ց ու ց ու մ: Օգտվելով (11.60)-ից՝ կստանանք`  

var(𝑒0 ) = E [(𝑌0 − 𝑌̂0)
2
] =

= E(𝜀0
2) + 𝑥0

2 E [(𝑏̂ − 𝑏)
2
] + E[(𝛆̅)2] − 2𝑥0E[𝜀0(𝑏̂ − 𝑏)] − 

 

−2E(𝜀0𝜺
 ̅) + 2𝑥0E[(𝑏̂ − 𝑏)𝛆̅] , 

որտեղ (տե՛ս (11.11)-ը) 

E[𝜀0(𝑏̂ − 𝑏)] = E [𝜀0∑𝜔𝑖𝜀𝑖

 

 

] =∑𝜔𝑖E(𝜀0𝜀𝑖) = 0

 

 

, 

E(𝜀0𝛆̅) = E( 
𝜀0
𝑛
 ∑𝜀𝑖

 

 

) =
1

𝑛
 ∑E(𝜀0𝜀𝑖) 

 

 

= 0, 

E[(𝑏̂ − 𝑏)𝛆 ̅] = E(∑𝜔𝑖𝜀𝑖

 

 

)(
1

𝑛
 ∑𝜀𝑗

 

 

) =

=
1

𝑛
 ∑𝜔𝑖

 

 

E(𝜀𝑖
2) +

1

𝑛
 ∑𝜔𝑖E(𝜀𝑖𝜀𝑗) =

σ2

𝑛
 

 

𝑖≠𝑗
 

∑𝜔𝑖 = 0:

 

 

 

Այստեղից՝ 

var(𝑒0 ) = E(𝜀0
2)  + 𝑥0

2 E [(𝑏̂ − 𝑏)
2
] +  E[(𝛆̅)2] = σ2 +

σ2𝑥0
2

∑𝑥𝑖
2 
+
1

𝑛2
∑E(𝜀𝑖

2)

 

 

= 



ԳԼՈՒԽ 11. ԵՐԿՈՒ ՓՈՓՈԽԱԿԱՆՈՎ ԳԾԱՅԻՆ ՌԵԳՐԵՍԻՈՆ ՄՈԴԵԼ 

202 

= σ2 (1 +
1

𝑛
+
𝑥0
2

∑𝑥𝑖
2 ):  

 

       Թեորեմ 11.10:  H 1. և  H 3. պայմանների դեպքում  (11.9) մոդելին բա-

վարարող կամայական (𝑋0, 𝑌0) զույգի համար 𝑌0 պատահական մեծու-

թյան  𝑌̂0 կանխատեսման  𝑒0 սխալի ցրվածքը, ըստ 𝑌𝑖-երի գծային անշեղ 

գնահատականների,  

ℒ 𝑌0
0 (𝐘) = {𝑌̃0 ∶  𝑌̃0 =∑𝑐𝑖𝑌𝑖  ,

𝑛

𝑖=1

 E𝑌̃0 = E𝑌0,   𝑐𝑖 ∈ ℛ} 

 

դասում նվազագույնն է, այսինքն՝ 𝑌̂0-ը 𝑌0-ի համար օպիմալ գնահա-

տական է :  

Ա պ ա ց ու ց ու մ:  Դիցուք 

 𝑌̃0 = ∑𝑐𝑖𝑌𝑖 ∈ 

 

 

ℒ 𝑌0
0 (𝐘)   

𝑌0 պատահական մեծության համար որոշակի անշեղ գնահատական է, 

այսինքն՝ 

E(𝑌̃0) = E(𝑌0) = 𝑎 + 𝑏𝑋0: 

Այստեղից կստանանք` 

 E(𝑌̃0) =∑𝑐𝑖(𝑎 + 𝑏𝑋𝑖) = 𝑎 + 𝑏𝑋0: 

 

 

                          (11.61) 

Քանի որ (11.61)-ը տեղի ունի կամայական 𝑎, 𝑏 ∈ ℛ­ ից, ապա այն 

ճիշտ է նաև, երբ 𝑎 = 0, 𝑏 = 1, և երբ 𝑎 = 1, 𝑏 = 0, այնպես որ (11.61)-ը 

կընդունի հետևյալ տեսքը՝ 

 ∑𝑐𝑖𝑋𝑖 = 𝑋0  (∑𝑐𝑖𝑥𝑖 = 𝑋0 − 𝐗̅ 

 

 

)   և 

 

 

 ∑𝑐𝑖 = 1: 

 

 

         (11.62) 

Մյուս կողմից՝ ունենք` 
 

 E [(𝑌̃0 − 𝑌0)
2
] = E [(𝑌̃0 − 𝑌̂0)

2
] +  E [(𝑌̂0 − 𝑌0)

2
] + 

 

+ 2 E[(𝑌̃0 − 𝑌̂0)(𝑌̂0 − 𝑌0)]:                                         (11.63) 

Ցույց տանք, որ  
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E[(𝑌̃0 − 𝑌̂0)(𝑌̂0 − 𝑌0)] = 0: 

Ունենք՝ 

 E[(𝑌̃0 − 𝑌̂0)(𝑌̂0 − 𝑌0)] = E(𝑌̃0𝑌̂0) − E(𝑌̂0
2) − E(𝑌̃0𝑌0) + E(𝑌̂0𝑌0) ∶     (11.64) 

(11.64)-ի առաջին գումարելին (տե՛ս (11.62)-ը) կլինի՝ 
 

E(𝑌̃0𝑌̂0) = E [(∑𝑐𝑖𝑌𝑖

 

 

) (𝑎̂ + 𝑏̂𝑋0)] = E [(∑𝑐𝑖(𝑎 + 𝑏𝑋𝑖 + 𝜀𝑖)

 

 

) (𝑎̂ + 𝑏̂𝑋0)] = 

 

 = E [(∑𝑐𝑖(𝑎 + 𝑏𝑋𝑖)

 

 

+∑𝑐𝑖𝜀𝑖

 

 

) (𝑎̂ + 𝑏̂𝑋0)] = 

 

= (𝑎 + 𝑏𝑋0)
2 + E [(∑𝑐𝑖𝜀𝑖

 

 

) (𝑎̂ + 𝑏̂𝑋0)]: 

Այնուհետև, ըստ (11.11)-ի և (11.12)-ի, ունենք` 

E [(∑𝑐𝑖𝜀𝑖

 

 

) (𝑎̂ + 𝑏̂𝑋0)] =

= E {(∑𝑐𝑖𝜀𝑖

 

 

) [𝑎 +∑(
1

𝑛
− 𝐗̅𝜔𝑗) 𝜀𝑗 + (𝑏 +∑𝜔𝑗𝜀𝑗

 

 

)𝑋0

 

 

]} =

= E {(∑𝑐𝑖𝜀𝑖

 

 

) [𝑎 + 𝑏𝑋0 + (𝑋0 − 𝐗̅)∑𝜔𝑗𝜀𝑗

 

 

+
1

𝑛
 ∑𝜀𝑗

 

 

]} = 

 

 = (𝑋0 − 𝐗̅)E [(∑𝑐𝑖𝜀𝑖

 

 

)(∑𝜔𝑗𝜀𝑗

 

 

)]  + 
1

𝑛
 E [(∑𝑐𝑖𝜀𝑖

 

 

)(∑𝜀𝑗

 

 

)] = 

 

 = σ2(𝑋0 − 𝐗̅)(∑𝑐𝑖𝜔𝑖

 

 

) + 
σ2

𝑛
∑𝑐𝑖 ∶

 

 

                       (11.65) 

Այժմ նկատենք, որ 

∑𝑐𝑖𝜔𝑖 =
∑ 𝑐𝑖𝑥𝑖
 
 

∑𝑥𝑗
2  

 

 

=
∑ 𝑐𝑖𝑋𝑖 −
 
 𝐗̅ ∑ 𝑐𝑖

 
 

∑𝑥𝑗
2 =

𝑋0 − 𝐗̅

∑𝑥𝑗
2  , 

այնպես որ (11.65)-ը կընդունի հետևյալ տեսքը՝ 
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E [(∑𝑐𝑖𝜀𝑖

 

 

) (𝑎̂ + 𝑏̂𝑋0)] =
σ2(𝑋0 − 𝐗̅)

2

∑𝑥𝑗
2 +

σ2

𝑛
∶ 

Այսպիսով կստանանք` 

 E(𝑌̃0𝑌̂0) = (𝑎 + 𝑏𝑋0)
2 +

σ2(𝑋0 − 𝐗̅)
2

∑𝑥𝑗
2 +

σ2

𝑛
∶  

Դիտարկենք (11.64)-ի երկրորդ գումարելին՝ 
 

E(𝑌̂0
2) = E(𝑎̂ + 𝑏̂𝑋0)

2
= E [𝑎 +∑(

1

𝑛
− 𝐗̅ 𝜔𝑗) 𝜀𝑗 + (𝑏 +∑𝜔𝑗𝜀𝑗

 

 

)𝑋0

 

 

]

2

= 

 = E [𝑎 + 𝑏𝑋0 + (𝑋0 − 𝐗̅)∑𝜔𝑗𝜀𝑗

 

 

+
1

𝑛
 ∑𝜀𝑗

 

 

]

2

= 

 

 = (𝑎 + 𝑏𝑋0)
2 +

σ2(𝑋0 − 𝐗̅)
2

∑𝑥𝑗
2 +

σ2

𝑛
= E(𝑌̃0𝑌̂0):                 (11.66) 

 

(11.64)-ի երրորդ գումարելին կլինի 

E(𝑌̃0𝑌0) = E [(∑𝑐𝑖𝑌𝑖

 

 

) (𝑎 + 𝑏𝑋0 + 𝜀0)] = 

 

= E [∑𝑐𝑖(𝑎 + 𝑏𝑋𝑖)(𝑎 + 𝑏𝑋0 + 𝜀0) +∑𝑐𝑖𝜀𝑖(𝑎 + 𝑏𝑋0 + 𝜀0)

 

 

 

 

] = 

= (𝑎 + 𝑏𝑋0)∑𝑐𝑖(𝑎 + 𝑏𝑋𝑖)

 

 

= (𝑎 + 𝑏𝑋0)
2 ∶ 

 (11.64)-ի չորրորդ գումարելիի համար դժվար չէ ստանալ`  

E(𝑌̂0𝑌0) = E {[𝑎 + 𝑏𝑋0 + (𝑋0 − 𝐗̅)∑𝜔𝑗𝜀𝑗

 

 

+
1

𝑛
 ∑𝜀𝑗

 

 

] (𝑎 + 𝑏𝑋0 + 𝜀0)} =

= (𝑎 + 𝑏𝑋0)
2 = E(𝑌̃0𝑌0):                                                           (11.67) 

Այսպիսով, (11.66)-ից և (11.67)-ից վերջնական կստանանք` 

E[(𝑌̃0 − 𝑌̂0)(𝑌̂0 − 𝑌0)] = 0, 
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այնպես որ (11.63)-ից կհետևի 

E [(𝑌̃0 − 𝑌0)
2
] ≥ E [(𝑌̂0 − 𝑌0)

2
] 

անհավասարությունը, այսինքն՝ 𝑌̂0-ը 𝑌0-ի համար օպտիմալ գնահա-

տական է:       

 

        Թեորեմ 11.11: Դիցուք (11.9) ռեգրեսիոն մոդելը բավարարում է H 1. և          

H  3. պայմանները: Այդ դեպքում 

𝑡 =
𝑌0 − 𝑌̂0
𝑠𝑒0

 ~ 𝕋(𝑛 − 2) 

վիճականին ունի (𝑛 − 2) ազատության աստիճաններով Ստյուդենտի 

բաշխում, որտեղ 

 𝑠𝑒0
2 = 𝕤2 (1 +

1

𝑛
+
𝑥0
2

∑𝑥𝑖
2 ) ­ն  

 𝑒0 մնացորդի σ𝑒0
2 = var (𝑒0) ցրվածքի գնահատականն է (տե՛ս լեմմա 11.6): 

Ա պ ա ց ու ց ու մ:  Համաձայն (11.60)-ի` 

 𝑒0 = 𝑌0 − 𝑌̂0 = − (𝑏̂ − 𝑏)𝑥0 + 𝜀0 − 𝛆̅  

մնացորդը բաշխված է նորմալ օրենքով` 𝑒0 ~ ℕ(0, σ𝑒0
2 ), քանի որ 𝑏̂, 𝜀0 և 𝛆̅ 

վիճականիները նորմալ են բաշխված: Այստեղից՝ 

𝜉0 =
𝑌0 − 𝑌̂0
𝜎𝑒0

 ~ ℕ(0,1):  

Մյուս կողմից, համաձայն լեմմա 11.6-ի՝ 

𝑠𝑒0
2

σ 𝑒0
2 =

𝕤2

𝜎2
=

1

𝑛 − 2
 𝜒𝑛−2
2  , 

որտեղ  𝑠𝑒0
2 = 𝕤2 (1 +

1

𝑛
+ 

𝑥0
2

∑𝑥𝑖
2): 

 

Այնուհետև նկատելով, որ 𝕤2 և 𝑌̂0 = 𝑎̂ + 𝑏̂𝑋0 վիճականիներն անկախ 

են (տե՛ս լեմմա 11.4-ը), ունենք` 
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𝑡 =
𝜉0

√ 1
𝑛 − 2

 𝜒𝑛−2
2

=
𝑌0 − 𝑌̂0
𝑠𝑒0

 ~ 𝕋(𝑛 − 2):    ∎ 

 

 

Համաձայն թեորեմ 11.11-ի՝ (𝑌̂0  ∓ 𝑡𝛼 2⁄ (𝑛 − 2) 𝑠𝑒0) միջակայքը 𝑌0-ի 

համար  𝛾 = 1 − 𝛼  մակարդակով վստահության միջակայք է, այսինքն՝ 

 P(𝑌̂0 − 𝑡𝛼 2⁄ (𝑛 − 2) 𝑠𝑒0 < 𝑌0 < 𝑌̂0 + 𝑡𝛼 2⁄ (𝑛 − 2) 𝑠𝑒0) = 1 − 𝛼 ∶    (11.68) 

 

       Խնդիր 

 

11.11.  𝑌𝑖 = 𝑎 + 𝑏𝑋𝑖 + 𝜀𝑖, 𝑖 = 1,… , 10  զույգային գծային ռեգրեսիայի 

համար ստացված են հետևյալ տվյալներ՝ 
 

∑𝑌𝑖 = 8,   ∑𝑋𝑖 = 40,   ∑𝑌𝑖
2 = 26,   ∑𝑋𝑖

2 = 200,   ∑𝑋𝑖 𝑌𝑖 = 20 ∶ 
 

Դիցուք դիտվում է այդ մոդելը բավարարող որոշակի 𝑋0 = 10 արժեքը: 

Գտնել 𝑌0-ի լավագույն գծային անշեղ կանխատեսումը և գնահատել կան-

խատեսման ստանդարտ սխալը: 
 

 Պատասխան՝  𝑌̂0 = −1,  𝑠𝑌̂0 = 2: 
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Գլուխ 12  

Բազմաչափ գծային ռեգրեսիոն մոդելներ 

 

Զույգային գծային ռեգրեսիոն մոդելների բնական ընդհանրացումն են 

բազմաչափ գծային ռեգրեսիոն մոդելները, որտեղ անկախ փոփոխա-

կանների (ռեգրեսորների) թիվը 𝑘 ≥ 2-ից: 

 

       § 12.1. Նվազագույն քառակուսիների եղանակ  

  

Ուսումնասիրվում է որոշակի  𝑌 պատահական  մեծության  կապը  

𝑋1, …, 𝑋𝑘 փոփոխականներից:  

𝑌 պատահական մեծության 𝑛 դիտումների արդյունքում ստացված 
 

 𝑌𝒊 = 𝛽1𝑋𝑖1 + 𝛽2𝑋𝑖2  +  ⋯ + 𝛽𝑘𝑋𝑖𝑘  +  𝜀𝑖 ,   𝑖 = 1,… , 𝑛   (𝑛 > 𝑘)        (12.1) 
 

ներկայացումով տրվող մոդելը, որտեղ 𝑋𝑖𝑗-երը (𝑖 = 1,… , 𝑛) 𝑋𝑗 փոփոխա-

կաններին, 𝑗 = 1,… , 𝑘, համապատասխանող դիտված արժեքներն են, 

կոչվում է 𝐤-չափանի գծային ռեգրեսիոն մոդել: 𝑋𝑖𝑗 մեծությունները կոչ-

վում են ռեգրեսորներ կամ անկախ (բացատրող) փոփոխականներ, 𝑌𝒊 պա-

տահական մեծությունները՝ «արձագանք» կամ կախյալ (բացատրվող) փո-

փոխականներ, 𝜀𝑖-երը՝ ռեգրեսիայի սխալներ կամ «աղմուկներ», 𝛽𝑗-երը 

(𝛽𝑗 ∈ ℛ, 𝑗 = 1,… , 𝑘) անհայտ գործակիցներ են: 

Հետագայում կհամարվի, որ  𝑋𝑖1 = 1, 𝑖 = 1,… , 𝑛: 

Սովորաբար (12.1) մոդելը բավարարում է հետևյալ պայմանները`  

 (H) պայմաններ`  

H 1.  𝐗̂𝒋 = ‖𝑋1𝑗 , 𝑋2𝑗 , … , 𝑋𝑛𝑗‖
𝑇

-երը   (𝐗̂𝟏 = 𝟏 ∶= ‖1,… , 1⏟  
𝑛

‖

𝑇

),  𝑗 = 1, … , 𝑘 

գծորեն անկախ  ℛ𝑛-ում ոչ պատահական վեկտորներ են,  
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H 2.                        E(𝜀𝑖) = 0, var(𝜀𝑖) = σ
2,   𝑖 = 1,… , 𝑛, 

cov(𝜀𝑖, 𝜀𝑗) = E(𝜀𝑖𝜀𝑗) = 0,   𝑖 ≠ 𝑗,   𝑖, 𝑗 = 1,… , 𝑛 

այսինքն` ռեգրեսիայի սխալները համասեռ են և չկորելյացված:  

Որոշ դեպքերում H 2. պայմանը կփոխարինվի հետևյալ պայմանով` 

H 3. 𝜀𝑖 ~ ℕ(0, σ
2), 𝑖 = 1,… , 𝑛` սխալներն անկախ համատեղ նորմալ 

բաշխում ունեցող պատահական մեծություններ են: (12.1) մոդելն այդ 

դեպքում կոչվում է նորմալ գծային ռեգրեսիոն մոդել: 

 (12.1) մոդելը և (H) պայմանները հարմար է ներկայացնել մատրի-

ցային տեսքով: Նշանակենք` 

𝐘 = ‖𝑌1, … , 𝑌𝑛‖
𝑇-ով դիտումների վեկտորը, 𝛃 = ‖𝛽1, … , 𝛽𝑘‖

𝑇-ով՝ գոր-

ծակիցների  վեկտորը,  𝛆 = ‖𝜀1, … , 𝜀𝑛‖
𝑇-ով՝  ռեգրեսիայի   սխալների   վեկ- 

 

տորը, 𝕏= ‖
1 𝑋12  … 𝑋1𝑘
……………
 1 𝑋𝑛2  … 𝑋𝑛𝑘

‖-ով՝  𝑛 × 𝑘-չափանի  բացատրող  փոփոխական- 

 

ների (ռեգրեսիոն) մատրիցը: Այդ դեպքում (12.1) մոդելը կներկայացվի  
 

𝐘 = 𝕏𝛃 + 𝛆                                                   (12.2)  

տեսքով, իսկ (H) պայմանները կընդունեն հետևյալ տեսքը՝  

H 1.  Ոչ պատահական ռեգրեսիոն 𝕏 մատրիցն ունի մաքսիմալ ռանգ 

(rank (𝕏) = 𝑘),  

 H 2.  E(𝛆) = 𝟎𝑛, 𝕍(𝛆) = E(𝛆𝛆𝑇 ) = σ𝟐𝔼𝒏  (𝟎𝑛 = ‖0,… , 0⏟  
𝑛

‖

𝑇

,  𝔼𝒏-ը  միավոր  

 

մատրից է),  

իսկ լրացուցիչ պայմանը կլինի  ̀

        H 3.  𝛆 ~ ℕ(𝟎𝑛, σ
𝟐𝔼𝑛) սխալների վեկտորն ունի բազմաչափ նորմալ 

բաշխում: 

Նվազագույն քառակուսիների եղանակի նպատակն է գտնել 𝛃 

գործակիցների վեկտորն այնպես, որ այն մինիմալացնի 𝛆 = 𝐘 − 𝕏𝛃 

սխալների  
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𝛆𝑇𝛆 =∑𝜀𝒊
𝟐

 

 

                                                        (12.3) 

քառակուսիների գումարը: 
 

       Թեորեմ 12.1: H 1. և  H 2. պայմանները բավարարվելու դեպքում (12.2) 

մոդելի 𝛃 պարամետրի նվազագույն քառակուսիների գնահատականը 

հավասար է 
 

𝛃̂ = (𝕏𝑇𝕏)−1𝕏𝑇𝐘:  

 Ա պ ա ց ու ց ու մ:  Ներկայացնենք (12.3)-ը հետևյալ տեսքով՝ 

𝛆𝑇𝛆 = (𝐘 − 𝕏𝛃)𝑇(𝐘 − 𝕏𝛃) = 𝐘𝑇𝐘 − 𝐘𝑇𝕏𝛃 − 𝛃𝑇𝕏𝑇𝐘 + 𝛃𝑇𝕏𝑇𝕏𝛃 = 
 

= 𝐘𝑇𝐘 −  2𝛃𝑇𝕏𝑇𝐘 + 𝛃𝑇𝕏𝑇𝕏𝛃:                                  (12.4) 

Այստեղ օգտագործվեց այն փաստը, որ 𝛃𝑇𝕏𝑇𝐘-ը սկալյար մեծություն է, 

որը շրջում (տրանսպոնացում) կատարելուց հետո մնում է անփոփոխ՝ 

𝛃𝑇𝕏𝑇𝐘 = (𝛃𝑇𝕏𝑇𝐘)𝑇 = 𝐘𝑇𝕏𝛃 : 

Դիֆերենցելով (12.4)-ն ըստ 𝛃 վեկտորի (տե՛ս սահմանում Հ. 25)` 

կստանանք՝  
 

𝜕(𝛆𝑇𝛆)

𝜕𝛃
= −2𝕏𝑇𝐘 + 2𝕏𝑇𝕏𝛃:                                     (12.5)  

 

Այստեղից՝ մինիմումի անհրաժեշտ պայմանից՝ 

𝜕(𝛆𝑇𝛆)

𝜕𝛃
= 𝟎, 

կստանանք՝ 

 𝕏𝑇𝕏𝛃 = 𝕏𝑇𝐘:                                            (12.6) 

Այնուհետև, համաձայն H 1. պայմանի և մատրիցի ռանգի՝ 

rank (𝕏𝑇𝕏) = rank (𝕏) = 𝑘 

հատկության (տե՛ս Հ.5, հատկություններ) հետևում է, որ 𝑘 × 𝑘-չափանի 

𝕏𝑇𝕏 մատրիցը հակադարձվում է, այնպես որ (12.6)-ից կստանանք` 
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 𝛃̂ = (𝕏𝑇𝕏)−1𝕏𝑇𝐘:                                         (12.7) 

Ցույց տանք, որ 𝛃̂-ը մինիմալացնում է ռեգրեսիայի սխալների 𝛆𝑇𝛆  

քառակուսիների գումարը: Այդ նպատակով դիտարկենք հետևյալ ներ-

կայացումը՝ 

𝛆𝑇𝛆 = (𝐘 − 𝕏𝛃)𝑇(𝐘 − 𝕏𝛃) = [(𝐘 − 𝕏𝛃̂) + 𝕏( 𝛃̂ − 𝛃)]
𝑇
[(𝐘 − 𝕏𝛃̂) + 𝕏(𝛃̂ − 𝛃)]  

 

= (𝐘 − 𝕏𝛃̂)
𝑇
(𝐘 − 𝕏𝛃̂) + (𝐘 − 𝕏𝛃̂)

𝑇
𝕏(𝛃̂ − 𝛃) + 

 

+(𝛃̂ − 𝛃)
𝑇
𝕏𝑇(𝐘 − 𝕏𝛃̂) + (𝛃̂ − 𝛃)

𝑇
𝕏𝑇𝕏 (𝛃̂ − 𝛃):                   (12.8) 

Այժմ, օգտվելով 

 𝛃̂ − 𝛃 = (𝕏𝑇𝕏)−1𝕏𝑇(𝕏𝛃 + 𝛆) – 𝛃 = (𝕏𝑇𝕏)−1𝕏𝑇𝛆              (12.9) 

և 

 𝐘 − 𝕏𝛃̂ = 𝕏𝛃 + 𝛆 −𝕏𝛃̂ = 𝛆 − 𝕏(𝛃̂ − 𝛃) 

ներկայացումներից, կստանանք` 

(𝛃̂ − 𝛃)
𝑇
𝕏𝑇(𝐘 − 𝕏𝛃̂) =  𝛆𝑇𝕏(𝕏𝑇𝕏)−1𝕏𝑇(𝛆 − 𝕏(𝕏𝑇𝕏)−1𝕏𝑇𝛆 ) = 0: 

Մյուս կողմից՝ ունենք` 

(𝐘 − 𝕏𝛃̂)
𝑇
𝕏(𝛃̂ − 𝛃) = [(𝛃̂ − 𝛃)

𝑇
𝕏𝑇(𝐘 − 𝕏𝛃̂)]

𝑇
 = 0, 

այնպես որ (12.8)-ից վերջնական կստանանք` 

(𝐘 − 𝕏𝛃)𝑇(𝐘 − 𝕏𝛃) = (𝐘 − 𝕏𝛃̂)
𝑇
(𝐘 − 𝕏𝛃̂) + (𝛃̂ − 𝛃)

𝑇
𝕏𝑇𝕏 (𝛃̂ − 𝛃):    (12.10) 

Այստեղից, նշանակելով  𝐳 = 𝐗(𝛃̂ − 𝛃), (12.10)-ից կստանանք` 

(𝐘 − 𝕏𝛃)𝑇(𝐘 − 𝕏𝛃) − (𝐘 − 𝕏𝛃̂)
𝑇
(𝐘 − 𝕏𝛃̂) = 𝐳𝑇𝐳 ≥ 0: 

Այսպիսով, թեորեմն ապացուցվեց:    

          

        Հետևանք  12.1  (տե՛ս խնդիր 11.1):  Ռեգրեսիայի  մնացորդների  
 

𝐞 = 𝐘 − 𝕏𝛃̂ 
 

վեկտորը օրթոգոնալ է  𝕏 մատրիցի  𝐗̂𝒋,  𝑗 = 1,… , 𝑘 սյունակ վեկտորներին: 
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Ա պ ա ց ու ց ու մ: Ակնհայտ է, որ 𝐗𝒋
𝑇𝐞 = 0, 𝑗 = 1,… , 𝑘 պայմանները 

համարժեք են 𝕏𝑇𝐞 = 𝟎 պայմանին: Այժմ, հաշվի առնելով 𝛃̂-ի (12.7) 

ներկայացումը, կստանանք` 

𝕏𝑇𝐞 = 𝕏𝑇(𝐘 − 𝕏𝛃̂) = 𝕏𝑇𝐘 − 𝕏𝑇𝕏𝛃̂ = 𝕏𝑇𝐘 − 𝕏𝑇𝕏(𝕏𝑇𝕏)−1𝕏𝑇𝐘 = 𝟎:     

 

       Հետևանք 12.2: Ռեգրեսիայի մնացորդների քառակուսիների գումարը՝ 

𝐞𝑇𝐞 =∑𝑒𝒊
𝟐

 

 

, 

կարելի է ներկայացնել հետևյալ ձևով՝ 
 

𝐞𝑇𝐞 = (𝐘𝑇 − 𝛃̂𝑇𝕏𝑇)𝐘 =  𝐘𝑇𝐘 − 𝛃̂𝑇𝕏𝑇𝕏𝛃:                      (12.11) 

 Ա պ ա ց ու ց ու մ:  Համանման սխալների քառակուսիների գումարի 

(12.4) ներկայացման, ունենք` 

𝐞𝑇𝐞 = 𝐘𝑇𝐘 − 2 𝛃̂𝑇𝕏𝑇𝐘 + 𝛃̂𝑇𝕏𝑇𝕏𝛃̂ = 𝐘𝑇𝐘 − 𝛃̂𝑇(2 𝕏𝑇𝐘 − 𝕏𝑇𝕏(𝕏𝑇𝕏)−1𝕏𝑇𝐘) = 

= 𝐘𝑇𝐘 − 𝛃̂𝑇𝕏𝑇𝐘:  

Այստեղից, հաշվի առնելով (12.6)-ը, կստանանք (12.11)-ը: 

Դիտողություն 12.1: 𝛃 պարամետրի նվազագույն քառակուսիների 

գնահատականը կարելի է նաև ստանալ՝ օգտվելով երկրաչափական 

մոտեցումից: 

 Պահանջվում է մինիմալացնել ըստ 𝛃 ∈ ℛ𝑘 վեկտորի՝  
 

‖𝛆‖2 = 𝛆𝑇𝛆 =∑𝜀𝒊
𝟐

 

 

= (𝐘 − 𝕏𝛃)𝑇(𝐘 − 𝕏𝛃) 

ռեգրեսիայի սխալների քառակուսիների գումարը, այսինքն՝ գտնել ℛ𝑛 

վեկտորական տարածության 𝛑 = {𝐘′ ∶  𝐘′ = 𝕏𝛃, 𝛃 ∈ ℛ𝑘} ենթատարածու-

թյունում այնպիսի 𝐘 = 𝕏𝛃̂  վեկտոր, որ 𝐞 = 𝐘 − 𝕏𝛃̂ վեկտորն ունենա նվա-

զագույն երկարությունը՝ 
 

inf
𝛃∈𝑅𝑘

‖𝐘 − 𝕏𝛃‖2 =‖𝐘 − 𝕏𝛃̂‖
2
: 

 

       Համաձայն Պյութագորասի թեորեմի՝ ունենք՝ 
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‖𝐘 − 𝕏𝛃‖2 = ‖𝐘 − 𝕏𝛃̂‖
2
+ ‖𝕏𝛃̂ − 𝕏𝛃‖ = ‖𝐘 − 𝕏𝛃̂‖

2
 + ‖𝕏 (𝛃̂ − 𝛃)‖ ≥  

 

≥ ‖𝐘 − 𝕏𝛃̂‖
2
։ 

 

Այսինքն՝ 𝐘 − 𝕏𝛃 վեկտորն իր նվազագույն արժեքն ընդունում է այն  

𝛃 = 𝛃̂ արժեքի դեպքում, երբ 𝐞 = 𝐘 − 𝕏𝛃̂ վեկտորը օրթոգոնալ է 𝛑 ենթա-

տարածությանը, որի համար անհրաժեշտ է և բավարար, որ 𝐞 վեկտորը 

լինի օրթոգոնալ 𝝅 ենթատարածությունը ծնող 𝐗̂𝒋, 𝑗 = 1,… , 𝑘 վեկտորնե-

րին, այսինքն՝  𝐗̂𝑗
𝑇𝐞 = 0  կամ  𝕏𝑇𝐞 = 0: Այստեղից բխում է 

 

𝕏𝑇(𝐘 − 𝕏𝛃̂) = 𝕏𝑇𝐘 − 𝕏𝑇𝕏𝛃̂ = 𝟎 
 

պայմանը, որտեղից էլ ստացվում է 𝛃̂ գնահատականի (12.7) ներկա-

յացումը:  

 

       Խնդիրներ 
 

12.1. Դիցուք տրված է  

 𝑌1 = 𝛽1 + 𝜀1, 

 𝑌2 = 2𝛽1 − 𝛽2 + 𝜀2, 

 𝑌3 = 𝛽1 + 2𝛽2 + 𝜀3 
 

ռեգրեսիոն մոդելը, որտեղ E(𝜀𝑖) = 0, 𝑖 = 1, 2, 3: Գտնել 𝛽1 և 𝛽2 գործա-

կիցների նվազագույն քառակուսիների գնահատականները: 
 

Պատասխան՝  𝛽̂1 =
1

6
 (𝑌1 + 2𝑌2 + 𝑌3),   𝛽̂2 =

1

5
 (2𝑌3 − 𝑌2): 

 

 12.2. Ապացուցել, որ H 1. և H 2. պայմանները բավարարող բազմա-

չափ ռեգրեսիոն մոդելի համար ճիշտ են հետևյալ առնչությունները՝ 

∑(𝑌𝑖 − 𝑌̂𝑖) = 0

 

 

,   ∑ 𝑌̂𝑖

 

 

(𝑌𝑖 − 𝑌̂𝑖) = 0: 

12.3. H 1. և H 2. պայմանները բավարարող 𝐘 = 𝕏𝛃 + 𝛆 ռեգրեսիոն 

հավասարման  𝛃  գործակիցների  վեկտորի  համար  դիտարկվում է 𝛃̃ = 

= [(𝕏𝑇𝕏)−1 + 𝛾𝔼𝒌] 𝕏
𝑇𝐘 գնահատականը: Գտնել այդ գնահատականի մի-

ջինը, կովարիացիոն մատրիցը և միջին քառակուսային շեղումների 

𝐌𝐒𝐄 (𝛃̃) ∶= E(𝛃̃ −  𝛃)(𝛃̃ −  𝛃)
𝑇

 մատրիցը: 
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 Պատասխան՝  E(𝛃̃ ) = 𝛃 + 𝛾𝕏𝑇𝕏𝛃, 𝕍(𝛃̃) = 𝕍(𝛃̂) + σ2(2𝛾𝔼𝒌 + 𝛾
2𝕏𝑇𝕏),  

 

MSE(𝛃̃) = 𝛾2ℂ + 2σ𝟐𝛾𝔼𝒌 + 𝕍(𝜷̂), որտեղ  𝛃̂-ը  𝛃-ի  ՆՔ գնահատականն է, իսկ  ℂ =  
 

= 𝕏𝑇𝕏𝛃𝛃𝑇𝕏𝑇𝕏 + σ𝟐𝕏𝑇𝕏: 

 

       § 12.2.  Գաուս – Մարկովի թեորեմ  

 

(12.2) մոդելը բավարարող 𝐘 դիտումների վեկտորի համար ներմու-

ծենք 
 

ℒ𝛽(𝐘) = 

= {𝛃∗:  𝛃∗ = 𝔸𝐘,   𝔸­ն կամայական  𝑘 × 𝑛­չափանի մատրից է,   E(𝛃∗) = 𝛃} 
 

𝛃 ∈ ℛ𝑘 պարամետրի գծային (ըստ 𝐘-ի) անշեղ գնահատականների դասը: 

 

        Թեորեմ 12.2 (Գաուս−Մարկով ): Դիցուք (12.2)մոդելը բավարարում 

է   H 1. և  H 2. պայմանները: Այդ դեպքում  𝛃 ∈ ℛ𝑘 պարամետրի նվազա-

գույն քառակուսիների  𝛃̂ = ‖𝛽̂1, …,   𝛽̂𝑘‖
𝑇

 գնահատականը օպտիմալ է 

ℒ𝛽(𝐘) դասում, այսինքն՝ 𝛃 պարամետրի գծային (ըստ 𝐘-ի) անշեղ գնահա-

տականների դասում  𝛽̂𝑗-ները, 𝑗 = 1,… , 𝑘, ունեն նվազագույն ցրվածքներ: 

Ա պ ա ց ու ց ու մ (տե՛ս [10]): Նշանակենք 𝔸 = (𝕏𝑇𝕏)−1𝕏𝑇 այնպես, որ 

𝛃̂ = 𝔸𝐘 : 𝛃 պարամետրի կամայական այլ գծային անշեղ գնահատականը 

ներկայացնենք  

𝛃∗ = (𝔸 + ℂ)𝐘 
 

տեսքով, որտեղ ℂ-ն որոշակի  𝑘 × 𝑛-չափանի մատրից է:  

Սկզբում ցույց տանք 𝛃̂ = 𝔸𝐘 գնահատականի անշեղությունը: Իրոք, 

նկատի ունենալով, որ 

 𝔸𝕏 = 𝔼𝒌,                                                   (12.12) 

կստանանք՝ 

E(𝛃̂)  = E(𝔸𝐘) = 𝔸E(𝐘) = 𝔸E(𝕏𝛃 + 𝛆) = 𝔸(𝕏𝛃 + E(𝛆)) = 𝔸𝕏𝛃 = 𝛃: 

Մյուս կողմից, քանի որ 𝛃∗-ը 𝛃 պարամետրի համար անշեղ գնահա-

տական է, ապա 
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𝛃 = E(𝛃∗) = (𝔸 + ℂ)E(𝐘) = (𝔸 + ℂ)𝕏𝛃 = 𝛃 + ℂ𝕏𝛃: 

Այստեղից հետևում է, որ 𝑘 × 𝑘 -չափանի ℂ𝕏 մատրիցը 𝟎𝑘×𝑘 (0–ական) 

մատրից է ՝  

 ℂ𝕏 = 𝟎𝑘×𝑘:                                            (12.13) 

       Այժմ գտնենք 𝛃̂ վեկտորի կովարիացիոն մատրիցը (տե՛ս սահմանում       

Հ. 30-ը, հատկություն 1)՝  

𝕍(𝛃̂) = 𝕍(𝔸𝐘 ) = 𝔸𝕍(𝐘)𝔸𝑇 = σ2(𝔸𝔸𝑇) = σ2(𝕏𝑇𝕏)−1𝕏𝑇𝕏[(𝕏𝑇𝕏)−1]𝑇 = 

 

= σ2[(𝕏𝑇𝕏)𝑇]− 1 = σ2(𝕏𝑇𝕏)−1 :                              (12.14) 
 

Մյուս կողմից, հաշվի առնելով (12.13)-ը, ունենք` 

𝕍(𝛃∗) = (𝔸 + ℂ)𝕍(𝐘)(𝔸 + ℂ)𝑇 = σ2(𝔸 + ℂ)(𝔸 + ℂ)𝑇 =  

= σ2(𝔸𝔸𝑇 + ℂ𝔸𝑇 +𝔸ℂ𝑇 + ℂℂ𝑇) = 

 = σ2[(𝕏𝑇𝕏)−1 + ℂ𝕏(𝕏𝑇𝕏)−1 + (𝕏𝑇𝕏)−1𝕏𝑇ℂ𝑇 + ℂℂ𝑇] =  
 

= σ2(𝕏𝑇𝕏)−1 + σ2(ℂℂ𝑇): 

Այստեղից՝ քանի որ ℂℂ𝑇 մատրիցը ոչ բացասական որոշյալ է (ℂℂ𝑇 ≥

≥ 0), ապա 

𝕍(𝛃∗) ≥ 𝕍(𝛃̂) (𝕍(𝛃∗) − 𝕍(𝛃̂) = σ2(ℂℂ𝑇) ≥ 0):                (12.15) 

(12.15) պայմանը նշանակում է, որ կամայական 𝐭 ∈ ℛ𝑘-ից վեկտորի 

համար  

𝐭𝑇 (𝕍(𝛃∗) − 𝕍(𝛃̂)) 𝐭 ≥ 0: 

Մասնավորապես, այս անհավասարությունը ճիշտ է  

𝐭(𝑖) = ‖𝛿𝑖1, … ,  𝛿𝑖𝑖 , … ,  𝛿𝑖𝑘‖
𝑇,  𝑖 = 1, … , 𝑘 

վեկտորների համար (𝛿𝑖𝑗-ն՝Կրոնեկերի սիմվոլն է), որտեղից էլ հետևում 

են  

var (𝛃𝑖
∗) ≥ var (𝛃̂𝑖

 ),   𝑖 = 1,… , 𝑘 

անհավասարությունները:        
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        Խնդիրներ 

  

12.4.  Դիցուք տրված է H 1. և H 2. պայմանները բավարարող 
 

𝑌𝑖 = 𝛽1 + 𝛽2𝑋𝑖 +𝜀𝑖,  𝑖 = 1,… , 𝑛 
 

զույգային գծային ռեգրեսիոն մոդելը: Ցոյց տալ, որ 𝛃̂ = (𝕏𝑇𝕏)−1𝕏𝑇𝐘 բա-

նաձևով որոշվող նվազագույն քառակուսիների գնահատականը 

համընկնում է (11.2)-ում և (11.3)-ում ստացված գնահատականի հետ: 
 

 12.5.  Դիցուք տրված է  
 

𝑌𝑖 = 𝛽1 + 𝛽2(𝑋𝑖2 − 𝐗̅2) + 𝛽3(𝑋𝑖3 − 𝐗̅3) + 𝜀𝑖,  𝑖 = 1,… , 𝑛 
 

ռեգրեսիոն մոդելը, որտեղ 
 

 𝐗̅𝑗 =
1

𝑛
∑𝑋𝑖𝑗

 

 

,   𝑗 = 2, 3  (E(𝛆) = 𝟎,𝕍(𝛆) = σ2𝔼𝑛):   

Ցույց տալ, որ 

var (𝛽̂2) =
σ2

(1 − 𝑟2,3
2 )∑ (𝑋𝑖2 − 𝐗̅2)

 
 

 ,  

 

որտեղ 𝛽̂2-ը 𝛽2 պարամետրի նվազագույն քառակուսիների գնահատա-

կանն է, իսկ 𝑟2,3-ը՝ (𝑋𝑖2 , 𝑋𝑖3) զույգերի նմուշային կորելյացիայի գործա-

կիցը:  

 

       § 12.3.  Նվազագույն քառակուսիների գնահատականների  

       հատկությունները 

 

§ 12.1-ում ապացուցվեց, որ (12.2) ռեգրեսիոն մոդելի 𝐘 ∈ ℛ𝑛 վեկտորի 

𝐘 = ‖𝑌̂1, … , 𝑌̂𝑛‖
𝑇
 «կանխատեսվող» վեկտորը ( 𝝅 ենթատարածությունում 𝜀𝑖 

սխալների քառակուսիների գումարի մինիմումի իմաստով լավագույն 

մոտարկումը) ներկայացվում է հետևյալ տեսքով՝ 

𝐘 = 𝕏𝛃̂ = 𝕏(𝕏𝑇𝕏)−1𝕏𝑇𝐘 ≔ ℕ𝐘:                            (12.16) 
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Այստեղից հետևում է, որ ℕ մատրիցը ℛ𝑛 տարածությունից 𝛑 ⊂ ℛ𝑛 

ենթատարածություն օրթոգոնալ պրոեկտման մատրից է (տե՛ս սահ-

մանում  Հ. 18): 

Նմանապես, ներկայացնենք ռեգրեսիայի մնացորդների 𝐞 = 𝐘 − 𝐘 

վեկտորը 

𝐞 = 𝐘 − 𝕏𝛃̂ = 𝐘 − 𝕏(𝕏𝑇𝕏)−1𝕏𝑇𝐘 = (𝔼𝑛 − ℕ)𝐘 ≔ 𝕄𝐘        (12.17) 

տեսքով, որտեղից կհետևի, որ 𝕄 = 𝔼𝑛 − ℕ մատրիցը ℛ𝑛 տարածությու-

նից 𝛑⊥ ⊂ 𝑅𝑛 օրթոգոնալ լրացման վրա պրոեկտման մատրից է (տե՛ս 

պնդում Հ. 21-ը): Ուստի  

𝐘 = ℕ𝐘 +𝕄𝐘 
 

արտահայտությունը 𝐘 վեկտորի օրթոգոնալ վերլուծություն է երկու վեկ-

տորների, որտեղ ℕ𝐘 ∈ 𝛑, իսկ 𝕄𝐘 ∈ 𝛑⊥: 
 

Բերենք ℕ և 𝕄 մատրիցների որոշ հատկություններ․ 

        Թեորեմ 12.3: ա) ℕ և 𝕄 մատրիցները համաչափ են և իդեմպոտենտ, 

այսինքն՝ պրոեկցիոն մատրիցներ են` 
 

ℕ = ℕ𝑇,   ℕ𝟐 = ℕ,   𝕄 = 𝕄𝑇 ,   𝕄2 = 𝕄, 
 

բ)  rank(ℕ) = tr(ℕ) = 𝑘,   rank(𝕄) = tr(𝕄) = 𝑛 − 𝑘, 
 

գ)  ℕ𝕏 = 𝕏,   𝕄𝕏 = 𝟎𝑛×𝑘,   𝔸𝕄 = 𝟎𝑘×𝑛  (𝔸 = (𝕏𝑇𝕏)−1𝕏𝑇): 

Ա պ ա ց ու ց ու մ: ա) Օգտվելով շրջված (տրանսպոնացված) և հա-

կադարձ մատրիցների հատկություններից (տե՛ս Հ. 1-ի և Հ. 4-ի հատ-

կությունները)՝ ունենք` 

ℕ𝑇 = [𝕏(𝕏𝑇𝕏)−1𝕏𝑇]𝑇 = 𝕏[(𝕏𝑇𝕏)−1]𝑻𝕏𝑇 = 𝕏[(𝕏𝑇𝕏)𝑇]−𝟏𝕏𝑇 = 

 

=  𝕏(𝕏𝑇𝕏)−1𝕏𝑇 = ℕ: 

Մյուս կողմից՝ 

ℕ2 = 𝕏(𝕏𝑇𝕏)−1𝕏𝑇𝕏(𝕏𝑇𝕏)−1𝕏𝑇 = 𝕏(𝕏𝑇𝕏)−1𝕏𝑇 =  ℕ: 

Նման ձևով կստանանք` 

 𝕄𝑇 = (𝔼𝑛 − ℕ)
𝑇 = 𝔼𝑛 – ℕ𝑇 = 𝔼𝑛 – ℕ = 𝕄, 
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𝕄2 = (𝔼𝑛 −ℕ)(𝔼𝑛 − ℕ) = 𝔼𝑛 – 2ℕ + ℕ2 = 𝕄: 

բ)  Համաձայն պնդում Հ. 14-ի՝ rank (ℕ) = tr (ℕ): Մյուս կողմից (տե՛ս    

Հ. 2)՝ ունենք` 

tr (ℕ) = tr [𝕏(𝕏𝑇𝕏)−1𝕏𝑇] = tr [𝕏𝑇𝕏(𝕏𝑇𝕏)−1] = tr (𝔼𝑘) = 𝑘: 

Կրկին օգտվելով պնդում Հ. 14 -ից՝ կստանանք`  

rank (𝕄) = tr (𝕄) = tr (𝔼𝑛 −ℕ) = 𝑛 − tr (ℕ) = 𝑛 − 𝑘: 

գ)  Ճիշտ են հետևյալ ակնհայտ առնչությունները՝ 

ℕ𝕏 = 𝕏(𝕏𝑇𝕏)−1 𝕏𝑇𝕏 = 𝕏,  
 

𝕄𝕏 = (𝔼𝑛 − 𝕏(𝕏
𝑇𝕏)−1𝕏𝑇)𝕏 = 𝕏 − 𝕏 = 𝟎𝑛×𝑘, 

 

𝔸𝕄 = (𝕏𝑇𝕏)−1𝕏𝑇(𝔼𝑛 − 𝕏(𝕏
𝑇𝕏)−1𝕏𝑇) =  

 

= (𝕏𝑇𝕏)−1𝕏𝑇−(𝕏𝑇𝕏)−1𝕏𝑇𝕏(𝕏𝑇𝕏)−1𝕏𝑇 = 𝟎𝑘×𝑛:       ∎ 
 

Այժմ դիտարկենք (12.2) մոդելի 𝜀𝑖 սխալների σ2 ցրվածքի գնահատ-

ման հարցը: 

 

        Լեմմա 12.1: (12.2) ռեգրեսիայի մնացորդների 𝒆 վեկտորը բավա-

րարում է  

E(𝐞) = 𝟎,   𝕍(𝐞) = σ2𝕄,   tr 𝕍(𝐞) =∑var (𝑒𝑖) 

 

 

 

պայմանները: 

Ա պ ա ց ու ց ու մ: Համաձայն թեորեմ 12.3-ի,  Հ. 28-ի և Հ. 30-ի ունենք` 

E(𝐞) = E(𝕄𝐘) = 𝕄E(𝐘) = 𝕄E(𝕏𝛃+ 𝛆) = 𝕄𝕏𝛃 = 𝟎, 

 

 𝕍(𝐞) = 𝕍(𝕄𝐘) = 𝕄𝕍(𝐘)𝕄𝑇 = σ2𝕄𝕄𝑇 = σ2𝕄2 = σ2𝕄:  

Վերջին հավասարությունն ակնհայտ է:  
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        Պնդում 12.1: Եթե (12.2) մոդելը բավարարում է  H 1. և  H 2. պայման-

ները, ապա 

𝕤2 ≔ σ2̂  =
1

𝑛 − 𝑘
 𝐞𝑇𝐞 =

1

𝑛 − 𝑘
 ∑𝑒𝑖

2

 

 

 

 

վիճականին (մնացորդային ցրվածքը) կլինի անշեղ գնահատական  𝜎2 

պարամետրի համար՝  E(𝕤𝟐) = σ2:  

Ա պ ա ց ու ց ու մ: Համաձայն (12.17) ներկայացմանը և այնուհետև 

կիրառելով թեորեմ 12.3-ը և լեմմա 12.1-ը՝ կստանանք` 

E(𝐞𝑇𝐞) =∑var (𝑒𝑖) = tr 𝕍(𝐞)  = σ
2tr (𝕄) = σ2(𝑛 − 𝑘): 

𝑛

𝑖=1

 

𝛃̂ և 𝕤2գնահատականների վիճակագրական հատկությունները ստա-

նալու համար դիտարկենք (12.2) նորմալ ռեգրեսիոն մոդելը:    

        Թեորեմ 12.4: Դիցուք (12.2) մոդելը բավարարում է H 1. և H 3. պայմ-

անները: Տեղի ունեն  𝛃̂ և 𝕤2 գնահատականների հետևյալ հատկություն-

ները՝ 
 

ա)  𝛃̂ ~ ℕ𝒌(𝛃, σ
2(𝕏𝑇𝕏)−1), 

 

բ)  (𝛃̂ − 𝛃)
𝑇
𝕏𝑇𝕏 (𝛃̂ − 𝛃) σ2⁄ ~ ℍ2(𝑘), 

 

գ)   𝛃̂  և  𝕤2 գնահատականներն անկախ են, 
 

դ)  (𝐞T𝐞) σ2 = (𝑛 − 𝑘) 𝕤2 σ2 ⁄⁄ ~ ℍ2(𝑛 − 𝑘): 

Ա պ ա ց ու ց ու մ: ա) (12.9)-ից հետևում է, որ 𝛃̂ = 𝛃 + (𝕏𝑇𝕏)−1𝕏𝑇𝛆 

վեկտորն ունի բազմաչափ նորմալ բաշխում, ընդ որում (տե՛ս (12.14))՝ 

E (𝛃̂) = 𝛃,     𝕍(𝛃̂) = σ2(𝕏𝑇𝕏)−1 ∶  

 

բ)  (𝛃̂ − 𝛃)
𝑇
𝕏𝑇𝕏 (𝛃̂ − 𝛃) 𝜎2⁄  = (𝛃̂ − 𝛃)

𝑇
[𝕍(𝛃̂)]

−1
(𝛃̂ − 𝛃) պատահական  

 

մեծությունը, համաձայն ա) կետի և թեորեմ Հ. 34 -ի, ունի 𝒌 ազատության 

աստիճաններով  𝛘𝟐 բախում :  
 

 գ)  Համաձայն (12.17)-ի և թեորեմ 12.3 -ի՝  
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 𝐞 = 𝕄𝐘 = 𝕄(𝕏𝛃 + 𝛆) = 𝕄𝛆 ,                                (12.18) 
 

𝛃̂ = 𝛃 + (𝕏𝑇𝕏)−1𝕏𝑇𝛆 = 𝛃 + 𝔸𝛆 , 

այնպես որ 𝐞 և 𝛃̂ վեկտորներն ունեն համատեղ բազմաչափ նորմալ 

բաշխում: Հետևաբար՝ այդ վեկտորների անկախությունն ապացուցելու 

համար բավարար է ցույց տալ, որ նրանք չկորելյացված են (տե՛ս թեորեմ 

Հ. 41-ը): 

Համաձայն թեորեմ 12.3-ի գ) կետի՝ ունենք` 𝔸𝕄 = 𝟎𝑘×𝑛: Այնպես որ, 

ըստ լեմմա 12.1-ի՝  E( 𝐞) = 𝟎, հետևաբար (տե՛ս (12.18))`  

𝕍(𝛃̂, 𝐞) = E[(𝛃̂ − 𝛃)𝐞𝑇] =  E[𝔸𝛆𝛆T𝕄] = 𝔸E(𝛆𝛆𝑇)𝕄 = σ𝟐(𝔸𝕄) = 𝟎𝑘×𝑛: 

Այնուհետև, նկատելով, որ 𝕤2 վիճականին չափելի ֆունկցիա է 𝐞 վեկ-

տորից, եզրակացնում ենք, որ  𝛃̂ վեկտորը և  𝕤2 վիճականին անկախ են:  

դ)  Համաձայն (12.18) ներկայացմանը և թեորեմ 12.3-ի՝ ունենք` 

(𝐞𝑇𝐞) σ2 = (𝑛 − 𝑘) 𝕤2 𝜎2 ⁄⁄ = (𝛆𝑇𝕄𝑇𝕄𝛆) σ2 = (𝛆 σ⁄ )𝑇𝕄(𝛆 σ⁄ )⁄ , 

որտեղից, կրկին կիրառելով թեորեմ 12.3-ը և թեորեմ Հ. 45-ը, կստանանք 

նշված հատկությունը:       

  

       Խնդիրներ 

 

        12.6. Դիցուք 𝑌1, …, 𝑌𝑛 ~ ℕ(θ, σ
2) անկախ նորմալ բաշխված պատա-

հական մեծություններ են: Ապացուցել, օգտվելով թեորեմ 12.4-ից, որ` 
 

ա)  𝐘  նմուշային միջինն անկախ է  𝑄 = ∑ (𝑌𝑖 − 𝐘)
2   

 վիճականուց, 

 բ)  𝑄 σ2⁄  ~ ℍ2(𝑛 − 1): 
 

Ցուցում՝ ներկայացնել 𝑌𝑖 պատահական մեծությունները 𝑌𝑖 = 𝜃 + 𝜀𝑖 տեսքով, 

որտեղ  𝜀𝑖 ~ ℕ(0, σ
2), 𝑖 = 1,… , 𝑛 անկախ պատահական մեծություններ են: 

 

 12.7. Ապացուցել, որ (12.2) նորմալ ռեգրեսիոն մոդելում 𝐞𝑇𝐞 և 

(𝛃̂ − 𝛃)
𝑇
𝕏𝑇𝕏 (𝛃̂ − 𝛃) վիճականիներն անկախ են: 

 

Ցուցում՝  տե՛ս թեորեմ 12.4-ի  գ) կետի ապացույցը:  
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       § 12.4.  Կախյալ փոփոխականի վարիացիան:  

       𝑹𝟐 դետերմինացիայի գործակից 

 

1.  Բերենք (12.2)  մոդելը բավարարող 𝑌𝑖 կախյալ փոփոխականների 

 𝐘 =
1

𝑛
 ∑ 𝑌𝑖
 
   միջինի շուրջ ∑(𝑌𝑖 − 𝐘)

2 վարիացիայի տրոհումը ռեգրեսիայի 

հավասարումով բացատրվող և ռեգրեսիայի հավասարումով չբացա-

տրվող մասերի:  

       Թեորեմ 12.5:  Տեղի ունի  

    ∑(𝑌𝑖 − 𝐘)
2 =∑(𝑌𝑖 − 𝑌̂𝑖)

2
+∑(𝑌̂𝑖 − 𝐘)

2
 

 

 

 

 

 

                        (12.19)  

ներկայացումը: 

Ա պ ա ց ու ց ու մ: Ներկայացնենք ∑(𝑌𝑖 − 𝐘)
2  

  վարիացիան հետևյալ 

ձևով՝ 

∑(𝑌𝑖 − 𝐘 )
2 =∑(𝑌𝑖 − 𝑌̂𝑖 + 𝑌̂𝑖 − 𝐘)

2
 

 

=∑(𝑌𝑖 − 𝑌̂𝑖)
2
+∑(𝑌̂𝑖 − 𝐘)

2
 

 

 

 

 

 

+ 

+2∑(𝑌𝑖 − 𝑌̂𝑖)(𝑌̂𝑖 − 𝐘):

 

 

 

Ցույց տանք, որ վերջին գումարելին հավասար է զրոյի: Քանի որ, ըստ 

(12.16)-ի, 𝐘 = ℕ𝐘, ապա 

(𝐘)
𝑇
𝐘 = 𝐘𝑇ℕ𝑇ℕ𝐘 = 𝐘𝑇ℕ𝐘 = 𝐘𝑇𝐘̂:                          (12.20) 

Մյուս կողմից, դիֆերենցելով 

∑(𝑌𝒊 − 𝛽1 − 𝛽2𝑋𝑖2 − …− 𝛽𝑘𝑋𝑖𝑘)
𝟐

 

 

 

արտահայտությունն ըստ 𝛽1-ի, կստանանք նվազագույն քառակուսիների 

𝛃̂  գնահատականը գտնելու համար 

∑(𝑌𝒊 − 𝛽1 − 𝛽2𝑋𝑖2 − ⋯− 𝛽𝑘𝑋𝑖𝑘)
 

 

 

= 0 

նորմալ հավասարումներից մեկը, կամ (տե՛ս նաև (11.5)-ը) 
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 ∑(𝑌𝒊 − 𝑌̂𝑖) = 0 ⇔ 𝐘 = 𝐘:                                (12.21)

 

 

 

Այստեղից և (12.20)-ից կստանանք` 
 

 ∑(𝑌𝑖 − 𝑌̂𝑖)(𝑌̂𝑖 − 𝐘) 

 

 

=∑(𝑌𝒊 − 𝑌̂𝑖)𝑌̂𝑖 = (𝐘 − 𝐘)
𝑇
 𝐘 = 0:

 

 

   ∎           

(12.19) վերլուծությունում  
 

𝑇𝑆𝑆 =∑(𝑌𝑖 − 𝐘)
2 (𝑇𝑜𝑡𝑎𝑙 𝑆𝑢𝑚 𝑜𝑓 𝑆𝑞𝑢𝑎𝑟𝑒𝑠) 

 

 

 

նշանակում է 𝑌𝒊 փոփոխականների (𝐘 միջինի շուրջ) ամբողջ վարիացիան, 
 

𝑅𝑆𝑆 = ∑(𝑌̂𝑖 − 𝐘)
2
 (𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑆𝑢𝑚 𝑜𝑓 𝑆𝑞𝑢𝑎𝑟𝑒𝑠) 

 

 

  

ռեգրեսիայով «բացատրվող» ամբողջ վարիացիայի, իսկ 
 

𝐸𝑆𝑆 = ∑(𝑌𝑖 − 𝑌̂𝑖)
2
 (𝐸𝑟𝑟𝑜𝑟 𝑆𝑢𝑚 𝑜𝑓 𝑆𝑞𝑢𝑎𝑟𝑒𝑠) 

 

 

 

ռեգրեսիայով «չբացատրվող» ամբողջ վարիացիայի մասը (մնացորդային 

անդամը): 

Դիտողություն 12.2: Ներկայացնենք (12.19)-ը վեկտորական տեսքով՝ 

‖𝐘 − 𝐘𝟏‖2 = ‖𝐘 − 𝐘‖
2
+ ‖𝐘̂ − 𝐘𝟏‖

2
 ,                            (12.22) 

 

որտեղ  𝐘𝟏 = ‖𝒀̅, … , 𝒀̅ ⏟    
𝑛

‖

𝑇

: 

 

Նշանակելով` 𝐘∗ = 𝐘 − 𝐘𝟏 և 𝐘∗ = 𝐘 − 𝐘𝟏 (այստեղ, ըստ (12.21)-ի, 𝐘 = 𝐘) 

(12.22)-ը կբերվի հետևյալ տեսքի` 
 

𝐘∗
𝑇𝐘∗ = 𝐞

𝑇𝐞 + 𝐘∗
𝑇𝐘̂∗:                                          (12.23) 

 

       2. Ռեգրեսիայի միջոցով դիտվող 𝑌𝑖 արժեքների մոտարկման «որակը» 

նկարագրող բնութագրիչ է համարվում նմուշային բազմաչափ կորե-

լյացիայի գործակիցը: 
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 𝑌𝑖 և 𝑌̂𝑖 , 𝑖 = 1,… , 𝑛 մեծությունների միջև կորելյացիայի գործակիցը, 

այսինքն` 

 𝑅 =
∑(𝑌𝑖 − 𝐘)(𝑌̂𝑖 − 𝐘)

{∑(𝑌𝑖 − 𝐘)
𝟐∑(𝑌̂𝑖 − 𝐘)

2
}
1 2⁄
                              (12.24) 

 

մեծությունը, կոչվում է նմուշային բազմաչափ կորելյացիայի գործակից: 

𝑅2 մեծությունը կոչվում է դետերմինացիայի գործակից: 

        Թեորեմ 12.6: Դետերմինացիայի գործակիցն ունի հետևյալ ներկայա-

ցումները`  

 𝑅𝟐 =
𝑅𝑆𝑆

𝑇𝑆𝑆
=
𝐘∗
𝑇𝐘̂∗
𝐘∗
𝑇𝐘∗

= 1 −
𝐞𝑇𝐞

𝐘∗
𝑇𝐘∗

= 1 −
𝐸𝑆𝑆

𝑇𝑆𝑆
∶                  (12.25) 

Ա պ ա ց ու ց ու մ: Օգտվելով թեորեմ 12.5-ի ապացուցումից՝ (12.24) 

բանաձևի համարիչը կարելի է ներկայացնել հետևյալ տեսքով՝ 

∑(𝑌𝑖 − 𝐘)(𝑌̂𝑖 − 𝐘) =∑((𝑌𝑖 − 𝑌̂𝑖) + (𝑌̂𝑖 − 𝐘))(𝑌̂𝑖 − 𝐘) =∑(𝑌̂𝑖 − 𝐘)
2

 

 

 

 

 

 

: 

(12.25)-ում բերված ներկայացումները բխում են (12.24)-ից և (12.23)-ից:  

Դիտողություն 12.3: Ակնհայտ է, որ 0 ≤ 𝑅2 ≤ 1: Դետերմինացիայի 

գործակիցը, ինչպես և նմուշային բազմաչափ կորելյացիայի գործակիցը 

նկարագրում են ռեգրեսիոն մոդելի՝ դիտվող 𝑌𝑖 արժեքներին համապա-

տասխանության «որակը»:  

(12.25)-ից հետևում է 

𝐸𝑆𝑆 =∑(𝑌𝑖 − 𝑌̂𝑖)
2
=

 

 

(1 − 𝑅2)∑(𝑌𝑖 − 𝐘)
2

 

 

 

ներկայացումը, որտեղից երևում է, որ որքան մոտ է 𝑅2 գործակիցը մեկ 

արժեքին, այնքան լավ են մոտարկվում 𝑌𝑖 դիտվող արժեքները ռեգրեսիա-

յի միջոցով ստացվող 𝑌̂𝑖 կանխատեսումներով: 

Եթե 𝑅2 = 0, ապա 𝑅𝑆𝑆 = 0, որտեղից հետևում է, որ 𝑌̂𝑖 = 𝐘 , 𝑖 =

1,… , 𝑛: Իսկ դա նշանակաում է, որ 𝐘 «պարզագույն» կանխատեսման հա-

մեմատ ռեգրեսիան չի լավացնում կանխատեսման որակը: 
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Եթե 𝑅𝟐 = 1, ապա 𝐸𝑆𝑆 = 0, այսինքն` 𝑌̂𝑖 = 𝑌𝑖, բոլոր դիտվող կետերն 

ընկած են ռեգրեսիոն ուղղի վրա, ուստի մոդելի և դիտվող 𝑌𝑖 արժեքների 

միջև առկա է հստակ համապատասխանություն: 

Դիտողություն 12.4: 𝑅2 գործակիցն աճում է, եթե ռեգրեսորների թիվը 

մեծանում է, որը, սակայն, չի նշանակում ռեգրեսիայի «լավացում»: Որ-

պեսզի վերացվի ռեգրեսորների թվի մեծանալու հետ մեկտեղ 𝑅2 գործակ-

ցի աճելու միտումը, սահմանվում է այսպես կոչված ճշգրտված (adjusted ) 

𝑅2 գործակից` 

𝑅𝑎𝑑𝑗
2 = 1 −

(𝐞𝑇𝐞) (𝑛 − 𝑘)⁄

(𝐘∗
𝑇𝐘∗) (𝑛 − 1)⁄

= 1 −
𝐸𝑆𝑆 (𝑛 − 𝑘)⁄

𝑇𝑆𝑆 (𝑛 − 1)⁄
∶ 

Ճշգրտված 𝑅𝑎𝑑𝑗
2  գործակիցը սովորաբար կիրառվում է տարբեր ռեգ-

րեսիաները համեմատելու համար, երբ դրանց ռեգրեսորների թվերը 

տարբեր են: 

𝑅𝑎𝑑𝑗
2  գործակցի հատկությունները ` 

1.  𝑅𝑎𝑑𝑗
2 = 1 − (1 − 𝑅2)

𝑛 − 1

𝑛 − 𝑘
 , 

2.  𝑅𝑎𝑑𝑗
2 ≤ 𝑅2,  𝑘 > 1, 

3.  𝑅𝑎𝑑𝑗
2 ≤ 1, ընդ որում՝ այն կարող է ընդունել և բացասական ար-

ժեքներ: 

 

              Խնդիր 

 

              12.8.  Ապացուցել 𝑅𝑎𝑑𝑗
2  գործակցի հատկությունները 

 

        § 12.5.  Վարկածների ստուգում և միջակայքային գնահատում 
 

Դիտարկենք H 1. և H 3. պայմանները բավարարող (12.2) ռեգրեսիոն 

մոդելը: Նշանակալիության 𝛼 մակարդակով ստուգենք 𝛃 = ‖𝛽1, … , 𝛽𝑘‖
𝑇  

պարամետրին վերաբերող վարկածներ: 
 

1.  Ստուգվում է 
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ℍ0:  𝛽𝑖 = 𝛽𝑖0  վարկածն ընդդեմ  ℍ1:  𝛽𝑖 ≠ 𝛽𝑖0 

երկընտրանքայինի, որտեղ 𝛽𝑖0 ∈ ℛ՝ 𝑖 = 1, . . . , 𝑘, որոշակի հաստատուն 

թիվ է: 

        Թեորեմ 12.7: Եթե  ℍ0 վարկածը ճիշտ է, ապա  
 

𝑇𝑖 =
𝛽̂𝑖 − 𝛽𝑖0
𝕤𝛽̂𝑖

 ~ 𝕋(𝑛 − 𝑘) 

 

վիճականին ունի (𝑛 − 𝑘) ազատության աստիճաններով Ստյուդենտի 

(𝒕 ­) բաշխում: 

Ա պ ա ց ու ց ու մ: ℍ0 վարկածը բավարարվելու դեպքում, համաձայն 

թեորեմ 12.4-ի ա) կետի, ունենք` 

β̂ − β0 ~ ℕ𝑘(𝟎, σ
2(𝕏𝑇𝕏)−1), 

 

որտեղից հետևում է, որ 

𝛽̂𝑖 − 𝛽𝑖0 ~ ℕ(0, σ
𝛽̂𝑖

2 ) ,  σ
𝛽̂𝑖

2  = var (𝛽̂𝑖) = σ
2𝑐𝑖𝑖։ 

 

Այստեղ 𝑐𝑖𝑖-ն (𝕏𝑇𝕏)−1 մատրիցի 𝑖-րդ անկյունագծային էլեմենտն է: Որպես 

var (𝛽̂𝑖) ցրվածքի գնահատական վերցնենք  
 

𝕤
𝛽̂𝑖

2 = var(𝛽̂𝑖)
̂ = 𝕤2𝑐𝑖𝑖   (𝕤

2 =
𝒆𝑇𝒆

𝑛 − 𝑘
) 

 

վիճականին: Կրկին օգտվելով թեորեմ 12.4-ի գ) և դ) կետերից՝ կստա-

նանք` 

𝑇𝑖 =
𝛽̂𝑖 − 𝛽𝑖0
𝕤𝛽̂𝑖

=
(𝛽̂𝑖 − 𝛽𝑖0) σ𝛽̂𝑖

 ⁄

𝕤
𝛽̂𝑖

 σ
𝛽̂𝑖

 ⁄
=

Z

√ 1
𝑛 − 𝑘

 𝜒𝑛−𝑘
2

 ~ 𝕋(𝑛 − 𝑘), 

որտեղ 

Z = (𝛽̂𝑖 − 𝛽𝑖0) σ𝛽̂𝑖
 ⁄  ~ ℕ(0, 1), 

 

𝕤
𝛽̂𝑖

 σ
𝛽̂𝑖

 ⁄ = 𝕤 σ = √
1

𝑛 − 𝑘
 𝜒𝑛−𝑘
2⁄  (𝜒𝑛−𝑘

2 = (𝑛 − 𝑘) 𝕤2 𝜎2 ~⁄  ℍ2(𝑛 − 𝑘)) :     ∎  
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Օգտվելով թեորեմ 12.7-ից՝ կստանանք ℍ0 վարկածը ստուգող 𝛼 

մակարդակով երկկողմանի կրիտիկական բազմությունը՝ 
 

𝒳1𝛼 = {𝐱: |
𝛽̂𝑖 − 𝛽𝑖0
𝕤𝛽̂𝑖

| ≥ 𝑡𝛼 2⁄ (𝑛 − 𝑘)}: 

 

 Նկատի ունենալով ցանկացած  𝛽𝑖 ∈ ℛ  պարամետրի համար 
 

𝑇𝑖 =
𝛽̂𝑖 − 𝛽𝑖
𝕤𝛽̂𝑖

 ~ 𝕋(𝑛 − 𝑘) 

 

պայմանը՝ կարելի է ստանալ 𝛾 = 1 −  𝛼 մակարդակով երկկողմանի 

վստահության միջակայքը  𝛽𝑖-ի համար՝ 
 

P (𝛽𝑖 ∈ (𝛽̂𝑖 ∓ 𝑡𝛼 2⁄ (𝑛 − 𝑘) 𝕤𝛽̂𝑖)) = 1 − 𝛼: 

Դիտողություն 12.5: Գործնականում հետաքրքրություն է ներկայաց-

նում  

ℍ0 ∶  𝛽𝑖 = 0 
 

վարկածը ստուգելու խնդիրը, այսինքն՝ 𝐗̂𝑖 գործոնի նշանակալիության 

ստուգման հարցը: Համապատասխան վիճականին կլինի  
 

𝕥 =
𝛽̂𝑖
𝕤𝛽̂𝑖
 , 

 

որը կոչվում է 𝕥 – վիճականի և բերվում է բոլոր վիճակագրական փաթեթ-

ներում:  

|𝕥| > 𝑡𝛼 2⁄ (𝑛 − 𝑘) 
 

պայմանը վկայում է այն մասին, որ ռեգրեսիոն մոդելում  𝐗̂𝑖 գործոնն ունի 

𝛼  մակարդակով նշանակալի ազդեցություն:  

2.  Դիցուք ստուգվում է  

ℍ0:  𝛽2 = 𝛽3 = ⋯ = 𝛽𝑘 = 0 

վարկածն ընդդեմ ℍ1 երկընտրանքային վարկածի, որ ոչ բոլոր 𝛽𝑖 գործա-

կիցներն են հավասար 0-ի: Այս վարկածը թույլ է տալիս ստուգել ամբողջ 

ռեգրեսիայի նշանակալիության հարցը: 
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Սահմանենք հետևյալ վիճականի (𝑭 − վիճականի)` 

𝐹 =
𝑅2 (𝑘 − 1)⁄

(1 − 𝑅2) (𝑛 − 𝑘)⁄
=
𝑅𝑆𝑆 (𝑘 − 1)⁄

𝐸𝑆𝑆 (𝑛 − 𝑘)⁄
=  

1
𝑘 − 1

 
𝐘∗
𝑇𝐘̂∗
σ2

1
𝑛 − 𝑘

 
𝐞𝑇𝐞
σ2

∶ 

 

       Թեորեմ 12.8: ℍ0 վարկածը բավարարվելու դեպքում 𝑭- վիճականին 

ունի (𝑘 − 1) և (𝑛 − 𝑘) ազատության աստիճաններով Ֆիշեր – Սնեդեկորի 

(𝑭 −) բաշխում ՝ 

𝐹 ~ 𝕊(𝑘 − 1, 𝑛 − 𝑘): 

Ա պ ա ց ու ց ու մ:  Ցույց տանք, որ 

𝐘∗
𝑇𝐘̂∗
σ2

 ~ ℍ2(𝑘 − 1): 

Համաձայն (12.21)-ի՝ ունենք` 

 𝐘∗ = 𝐘 − 𝐘𝟏 = 𝐘 − 𝐘𝟏 = ℕ𝐘 − 𝐘𝟏:                       (12.26)  

Մյուս կողմից՝ 

𝐘𝟏 =
1

𝑛
 (𝟏 ∙ 𝟏𝑇)𝐘 = ℙ𝐘  (ℙ =

1

𝑛
 ‖

1…1
……
1…1

‖):               (12.27)  

Քանի որ ℙ մատրիցը համաչափ է և իդեմպոտենտ (պրոեկցիոն մատրից 

է), ապա (12.27)-ից հետևում է, որ այն 1 վեկտորի վրա օրթոգոնալ 

պրոեկտման մատրից է (թեորեմ Հ. 23-ը): Այժմ ձևափոխենք (12.26) ար-

տահայտությունը՝ 
 

𝐘∗ = ℕ𝐘 − 𝐘𝟏 = (ℕ − ℙ)𝐘 = (ℕ − ℙ)(𝕏𝛃 + 𝛆) = (ℕ − ℙ) 𝕏𝛃 + (ℕ − ℙ)𝛆 = 
 

= (𝕏 − ℙ𝕏)𝛃 + (ℕ − ℙ)𝛆                                    (12.28) 

(այստեղ օգտագործվեց  ℕ𝕏 = 𝕏  հատկությունը (տե՛ս թեորեմ 12.3 գ)): 

Դժվար չէ տեսնել, որ (12.28) -ում բերված 𝕏∗ ∶= 𝕏 − ℙ𝕏 մատրիցի 

առաջին սյունը կազմված է 0-ներից: Այնպես որ, ℍ0 վարկածը բավարար-

վելու դեպքում, կստանանք` 
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𝕏∗𝛃 = ‖
0 𝑋12

∗ … 𝑋1𝑘
∗

…………… .
0 𝑋𝑛2

∗ … 𝑋𝑛𝑘
∗
‖‖
𝛽1
⋮
𝛽𝑘

‖ = ‖
0 ∙ 𝛽1 + 𝑋12

∗ ∙ 𝛽2 +⋯+ 𝑋1𝑘
∗ ∙ 𝛽𝑘

……………………………………
0 ∙ 𝛽1 + 𝑋𝑛2

∗ ∙ 𝛽2 +⋯+ 𝑋𝑛𝑘
∗ ∙ 𝛽𝑘

‖ = ‖
0
⋮
0
‖ = 𝟎:  

Հետևաբար՝ (12.28)-ը կընդունի հետևյալ տեսքը՝ 

𝐘∗ = (ℕ − ℙ)𝛆: 

Համաձայն թեորեմ 12.3-ի՝ ℕ-ը համաչափ և իդեմպոտենտ մատրից է, 

և tr(ℕ) = 𝑘: Մյուս կողմից ակնհայտ է, որ ℕ− ℙ մատրիցը համաչափ է: 

Բացի այդ, պարզ է, որ 

ℙℕ𝐘 = ℙ𝐘 =
1

𝑛
(𝟏 ∙ 𝟏𝑇)𝐘 = 𝐘𝟏 = 𝐘𝟏 = ℙ𝐘: 

 

Այստեղից՝ քանի որ Y-ը կամայական վեկտոր է ℛ𝑛-ից, ապա 

 ℙℕ = ℙ:                                                       (12.29)  

Այնուհետև, օգտվելով (12.29)-ից և ℕ ու ℙ մատրիցների իդեմպոտեն-

տությունից, կստանանք` 

(ℕ − ℙ)2 = (ℕ − ℙ)(ℕ − ℙ) = ℕ2 − ℕℙ− ℙℕ+ ℙ2 = 

= ℕ− ℕℙ −ℙ + ℙ = ℕ− ℕℙ: 
 

Այստեղից, հաշվի առնելով նաև ℕ և ℙ մատրիցների համաչափությունը, 

կունենանք` 

(ℕ − ℙ)2 = ℕ− ℕℙ = ℕ− ℕ𝑇ℙ𝑇 = ℕ − (ℙℕ)𝑇 = ℕ −ℙ𝑇 = ℕ− ℙ: 

Այսպիսով, ℕ− ℙ մատրիցը իդեմպոտենտ է և համաչափ, ուստի այն 

պրոեկցիոն մատրից է, ու համաձայն պնդում Հ. 14-ի և թեորեմ 12.3-ի՝  

rank(ℕ − ℙ) = tr(ℕ − ℙ) = tr(ℕ) − tr(ℙ) = 𝑘 − 1: 

Այժմ կիրառելով թեորեմ Հ. 45 -ը՝ կստանանք` 

𝐘∗
𝑇𝐘̂∗
σ2

=
1

σ2
 𝛆𝑇(ℕ − ℙ)𝑇(ℕ − ℙ)𝛆 = (𝛆 σ⁄ )𝑇(ℕ − ℙ)(𝛆 σ⁄ ) ~ ℍ2(𝑘 − 1): 

Մյուս կողմից, ըստ թեորեմ 12.4-ի դ) կետի՝ 

(𝐞𝑇𝐞) σ2⁄  ~ ℍ2(𝑛 − 𝑘): 
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Բացի այդ, համաձայն թեորեմ 12.4-ի գ) կետի, 𝐞 և 𝛃̂ վիճականիներն 

անկախ են, այնպես որ 𝑭 – վիճականին ունի (𝑘 − 1) և (𝑛 − 𝑘) ազատու-

թյան աստիճաններով Ֆիշեր −Սնեդեկորի (𝑭 −) բաշխում :            ∎   

Այսպիսով, 𝐻0  վարկածը 𝛼 նշանակալիության մակարդակով կհերք-

վի, եթե 𝑭 − վիճականու ընդունած  𝑓 = 𝐹(𝜔0)  արժեքը բավարարի 

𝑓 > 𝑆𝛼(𝑘 − 1, 𝑛 − 𝑘) 

պայմանը, որտեղ 𝑆𝛼(𝑘 − 1, 𝑛 − 𝑘)-ն 𝑭- բաշխման կրիտիկական արժեքն է: 

Դիտողություն 12.6: (12.29) պայմանը նշանակում է, որ 𝐘 ∈ ℛ𝑛 վեկ-

տորի հաջորդական օրթոգոնալ պրոեկտումը սկզբում 𝐗̂1, … , 𝐗̂𝑘 վեկտոր-

ներով ծնված 𝝅 հարթության վրա (ℕ𝐘 ∈ 𝛑 (տե՛ս թեորեմ Հ. 24)), այնու-

հետև 1 վեկտորի վրա (ℙℕ𝐘) համընկնում է 1 վեկտորի վրա 𝐘 վեկտորի 

ℙ𝐘 (տե՛ս թեորեմ Հ. 23) օրթոգոնալ պրոեկցիայի հետ (երեք ուղղահայաց-

ների վերաբերյալ թեորեմ): 

3. Այժմ դիտարկենք ընդհանուր տեսքի գծային սահմանափակում-

ների վարկածը՝  

ℍ0: ℝ𝛃 = 𝐫, 

որտեղ ℝ-ը 𝑞 × 𝑘 -չափանի հայտնի մատրից է, 𝛃-ն՝ ռեգրեսիոն մոդելի 

𝑘 × 1 - չափանի անհայտ գործակիցների վեկտոր, 𝐫-ը՝ տրված 𝑞 × 1 -չա-

փանի հայտնի հաստատունների վեկտոր: 

Ընդհանրապես բնական է համարել, որ սահմանափակումների 𝑞 թի-

վը չի գերազանցում պարամետրերի 𝑘 թիվը, և բոլոր սահմանափակում-

ները գծայնորեն անկախ են, այսինքն՝ 𝑞 ≤ 𝑘 և rank (ℝ) = 𝑞:  

        Թեորեմ 12.9:  ℍ0 վարկածը բավարարվելու դեպքում 
 

𝐹 =
(ℝ 𝛃̂ − 𝐫)

𝑇
[ℝ(𝕏𝑇𝕏)−1ℝ𝑇] −1(ℝ 𝛃̂ − 𝐫) 𝑞⁄

𝐞𝑇𝐞 (𝑛 − 𝑘)⁄
 ~ 𝕊(𝑞, 𝑛 − 𝑘)         (12.30) 

Ա պ ա ց ու ց ու մ:  Համաձայն թեորեմ 12.4-ի ա) կետի՝ ունենք`  

𝛃̂ ~ ℕ𝒌(𝛃,  σ
2(𝕏𝑇𝕏)−1): 
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Այստեղից (տե՛ս (Հ. 37))` հետևում է  

ℝ𝛃̂ − 𝐫 ~ ℕ𝒒(ℝ𝛃 − 𝐫,⅀),  

որտեղ  ⅀ = 𝕍(ℝ𝛃̂ − 𝐫) = 𝕍(ℝ𝛃̂) = ℝ𝕍(𝛃̂)ℝ𝑇 = σ2ℝ(𝕏𝑇𝕏)−1ℝ𝑇: Այժմ 

կիրառելով թեորեմ Հ. 34-ը և հաշվի առնելով ℍ0 վարկածը՝ կստանանք`  

𝜒𝑞
2 = (ℝ𝛃̂ − 𝐫)

𝑇
[ℝ(𝕏𝑇𝕏)−1ℝ𝑇] −1(ℝ𝛃̂ − 𝐫) σ2 ~ ⁄ ℍ2(𝑞): 

Մյուս կողմից, համաձայն թեորեմ 12.4-ի դ) կետի՝ 

 𝜒𝑛−𝑘
2 = (𝐞T𝐞) σ2⁄  ~ ℍ2(𝑛 − 𝑘), 

և քանի որ 𝛃̂ և 𝐞 վիճականիներն անկախ են (տե՛ս թեորեմ 12.4-ի գ) կետը), 

ապա 

𝐹 =
1

𝑞
 𝜒𝑞
2 

1

𝑛 − 𝑘
 𝜒𝑛−𝑘
2  ~ 𝕊(𝑞, 𝑛 − 𝑘): ⁄         ∎  

Համաձայն թեորեմի՝ ℍ0 վարկածը 𝛼 նշանակալիության մակարդա-

կով կհերքվի, եթե 𝑭 − վիճականու ընդունած արժեքը 𝑓 > 𝑆𝛼(𝑞, 𝑛 − 𝑘): 

Այժմ, ներկայացնելով  𝑭 – վիճականին  

𝐹 =
(𝛃̂ − 𝛃)

𝑇
ℝ𝑇[ℝ(𝕏𝑇𝕏)−1ℝ𝑇]−1ℝ(𝛃̂ − 𝛃) 𝑞⁄

𝐞𝑇𝐞 (𝑛 − 𝑘)⁄
 ~ 𝕊(𝑞, 𝑛 − 𝑘)  

տեսքով, 𝐹 < 𝑆𝛼(𝑞, 𝑛 − 𝑘) պայմանով  𝛃  պարամետրի համար որոշվում է 

𝛾 = 1 −  𝛼 մակարդակով վստահության տիրույթը:   

Դիտողություն 12.7: Եթե ℝ = 𝔼𝑘 (𝑞 = 𝑘), ապա 𝑭- վիճականին կըն-

դունի հետևյալ տեսքը՝ 

𝐹 =
(𝛃̂ − 𝛃)

𝑇
(𝕏𝑇𝕏)(𝛃̂ − 𝛃) 𝑘⁄

𝐞𝑇𝐞 (𝑛 − 𝑘)⁄
 ~ 𝕊(𝑘, 𝑛 − 𝑘):  

𝐹 < 𝑆𝛼(𝑘, 𝑛 − 𝑘) պայմանով որոշվող վստահության տիրույթը «էլիպսոիդ» 

է: 

 Ստանանք (12.30)-ում սահմանված 𝑭 – վիճականու մի այլ ներկա-

յացում, որի համար անհրաժեշտ է գտնել ℝ𝛃 = 𝐫 գծային սահմանափա-
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կումների դեպքում (12.2) ռեգրեսիոն մոդելի 𝛃 պարամետրի համար 

նվազագույն քառակուսիների գնահատականը (տե՛ս Себер [13]):   

        Թեորեմ 12.10: ℍ0 վարկածը բավարարվելու դեպքում 𝑭 – վիճականին 

բերվում է հետևյալ տեսքի՝ 
 

𝐹 =
(𝐞𝐑
𝑇𝐞𝐑 − 𝐞

𝑇𝐞) 𝑞⁄

𝐞𝑇𝐞 (𝑛 − 𝑘)⁄
 ~ 𝕊(𝑞, 𝑛 − 𝑘) ,                        (12.31) 

 

որտեղ 𝐞𝑅 = 𝐘 − 𝕏𝛃̂𝑅 -ը ℝ𝛃 = 𝐫 սահմանափակումների դեպքում ռեգրե-

սիայի մնացորդն է, իսկ 𝛃̂𝑅-ը՝ համապատասխան նվազագույն քառակու-

սիների գնահատականը: 

Ա պ ա ց ու ց ու մ: Գտնենք ℝ𝛃 = 𝐫 գծային սահմանափակումների 

դեպքում  

𝛆𝑇𝛆 = (𝐘 − 𝕏𝛃)𝑇(𝐘 − 𝕏𝛃) 

ռեգրեսիայի սխալների քառակուսիների գումարի մինիմումը: Օգտվենք 

Լագրանժի բազմապատկիչների մեթոդից: Դիտարկենք  

𝛠𝑖
𝑇𝛃 = 𝑟𝑖 ,   𝑖 = 1,… , 𝑞,   𝐫 = ‖𝑟1, … , 𝑟𝑞‖

𝑇 
 

գծային սահմանափակումների համակարգը, որտեղ 𝛠𝑖
𝑇-ն ℝ մատրիցի 𝑖-

րդ տողն է: 

Ներկայացնելով 

∑𝜆𝑖(𝛠𝑖
𝑇𝛃 − 𝑟𝑖 ) = 𝛌

𝑇(ℝ𝛃 − 𝐫) = (𝛃𝑇ℝ𝑇 − 𝐫𝑇) 𝛌,   𝛌 = ‖𝜆1, … , 𝜆𝑞‖
𝑇
 

 

 

 

տեսքով, դիտարկենք լագրանժիանը՝ 

𝐻(𝛌 ; 𝛃) = 𝛆𝑇𝛆 + (𝛃Tℝ𝑇 − 𝐫𝑇) 𝛌 = 𝛆𝑇𝛆 + 𝛌𝑇(ℝ𝛃 − 𝐫): 

Մինիմումի անհրաժեշտ պայմանը բերում է հետևյալ համակարգին 

(տե՛ս սահմանում Հ. 25)՝ 

{
 

 
𝜕𝐻

𝜕𝛌
= ℝ𝛃− 𝐫 = 𝟎,                                   

𝜕𝐻

𝜕𝛃
= −2 𝕏𝑇𝐘 + 2 𝕏𝑇𝕏𝛃+ ℝ𝑇𝛌 = 𝟎:
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Նշանակելով այս համակարգի լուծումները  𝛃̂𝑅-ով և 𝛌̂𝑅-ով՝ կստանանք` 

 𝛃̂𝑅 = (𝕏
𝑇𝕏)−1𝕏𝑇𝐘 −

1

2
 (𝕏𝕏𝑇)−1ℝ𝑇 𝛌̂𝑅 = 𝛃̂ −

1

2
 (𝕏𝑇𝕏)−1ℝ𝑇 𝛌̂𝑅 ,   (12.32)  

 − 
1

2
 𝛌̂𝑅 = [ℝ(𝕏𝕏

𝑇)−1ℝ𝑇]−1(𝐫 − ℝ𝛃̂): 

այնուհետև, տեղադրելով 𝛌̂𝑅-ի այս արժեքը (12.32) բանաձևի մեջ, 

կունենանք` 

𝛃̂𝑅 = 𝛃̂ + (𝕏
𝑇𝕏)−1ℝ𝑇[ℝ(𝕏𝑇𝕏)−1ℝ𝑇]−1(𝐫 − ℝ𝛃̂):             (12.33) 

ℝ𝛃 = 𝐫 սահմանափակումների դեպքում ռեգրեսիայի մնացորդը կլինի` 

𝐞𝑅 = 𝐘 − 𝕏𝛃̂𝑅 = 𝐘 − 𝕏𝛃̂ − 𝕏(𝛃̂𝑅 − 𝛃̂) = 𝐞 − 𝕏 (𝛃̂𝑅 − 𝛃̂): 

Այստեղից, նկատի ունենալով 𝐞𝑇𝕏 = 𝟎 
𝑇 պայմանը (հետևանք 12.1), 

կստանանք` 

 𝐞𝑅
𝑇𝐞𝑅 = [𝐞 − 𝕏 (𝛃̂𝑅 − 𝛃̂)]

𝑇
[𝐞 − 𝕏 (𝛃̂𝑅 − 𝛃̂)] = 

= 𝐞T𝐞 + (𝛃̂𝑅 − 𝛃̂)
𝑇
𝕏𝑇𝕏 (𝛃̂𝑅 − 𝛃̂):                                       (12.34) 

Որտեղից, օգտվելով (12.33)-ից, վերջնական կստանանք` 

  𝐞𝑅
𝑇𝐞𝑅 − 𝐞

𝑇𝐞 = (𝐫 − ℝ𝛃̂)
𝑇
[ℝ(𝕏𝑇𝕏)−1ℝ𝑇]−1(𝐫 − ℝ𝛃̂) ∶= 𝜒𝑞

2        (12.35) 

(տե՛ս թեորեմ 12.9-ի ապացույցը): Թեորեմն ապացուցված է:            

Դիտողություն 12.8: Թեորեմ 12.10-ում բերված (12.31) պայմանը 

կարելի է ներկայացնել նաև հետևյալ տեսքով՝ 

 

𝐹 =
(𝐸𝑆𝑆𝑅 − 𝐸𝑆𝑆) 𝑞⁄

𝐸𝑆𝑆 (𝑛 − 𝑘)⁄
 ~ 𝕊(𝑞, 𝑛 − 𝑘),                           (12.36) 

որտեղ 

𝐸𝑆𝑆 = 𝐞𝑇𝐞 = (𝐘 − 𝕏𝛃̂)
𝑇
(𝐘 − 𝕏𝛃̂) 

առանց սահմանափակումների ռեգրեսիոն մոդելի մնացորդների քառա-

կուսիների գումարն է, իսկ 

𝐸𝑆𝑆𝑅 ∶= 𝐞𝑅
𝑇𝐞𝑅 = (𝐘 − 𝕏𝛃̂𝑅)

𝑇
(𝐘 − 𝕏𝛃̂𝑅)` 
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ℝ𝛃 = 𝐫 գծային սահմանափակումներով ռեգրեսիոն մոդելի մնացորդների 

քառակուսիների գումարը: 

(12.36)-ում բերված 𝑭 – վիճականին կարելի է արտահայտել նաև դե-

տերմինացիայի գործակիցների միջոցով՝ 

𝐹 =
( 𝑅2 − 𝑅𝑅

𝟐) 𝑞⁄

(1 − 𝑅2) (𝑛 − 𝑘)⁄
 ~ 𝕊(𝑞, 𝑛 − 𝑘), 

որտեղ 

𝑅𝑅
𝟐 ∶= 1 −

𝐸𝑆𝑆𝑅
𝑇𝑆𝑆

 (𝑇𝑆𝑆𝑅 = 𝑇𝑆𝑆)  

 ℝ𝛃 = 𝐫 գծային սահմանափակումներով ռեգրեսիոն մոդելի դետերմինա-

ցիայի գործակիցն է:  

 4. Այժմ ուսումնասիրենք գործնականում շատ կիրառվող ընդհանուր 

գծային սահմանափակումներով ռեգրեսիոն մոդելի մասնավոր դեպքը 

(տես՛ [10]): 

 Դիցուք ստուգվում է 

ℍ0 :  𝛽𝑘−𝑞+1 = 𝛽𝑘−𝑞+2 = ⋯ = 𝛽𝑘 = 0 ,   𝑘 > 𝑞 

վարկածը: Պարզ է, որ այն ℝ𝛃 = 𝐫 գծային սահմանափակումներով վար-

կածի մասնավոր դեպքն է, որտեղ 
 

ℝ = ‖

0…0⏟  
𝑘−𝑞

1…0⏟  
𝑞

……………
0…0 0…1

‖ = ‖𝟎𝑞×(𝑘−𝑞) 𝔼𝑞‖  

 

𝑞 × 𝑘-չափանի մատրից է՝ տրոհված 𝑞 × (𝑘 − 𝑞)-չափանի 𝟎𝑞×(𝑘−𝑞) 0-

ական և 𝑞 × 𝑞-չափանի 𝔼𝑞 միավոր բլոկ մատրիցների, իսկ 𝒓 = 𝟎𝑞×1 `  

𝑞 × 1- չափանի 0-ական վեկտոր է:  

Ներկայացնենք 

𝕏 = ‖𝕏1 𝕏2‖-ով 

𝕏 մատրիցի տրոհումը 𝑛 × (𝑘 − 𝑞) և 𝑛 × 𝑞-չափանի 𝕏1 և 𝕏2 բլոկ մատ-

րիցների, 𝛃1 = ‖𝛽1, … , 𝛽𝑘−𝑞‖
𝑇
,   𝛃2 = ‖𝛽𝑘−𝑞+1, … , 𝛽𝑘‖

𝑇
:  𝛃̂1­ով  և  𝛃̂2-ով նշա-

նակենք   𝐘 = 𝕏1𝛃1 + 𝛆   և   𝐘 = 𝕏2𝛃2 + 𝛆   ռեգրեսիոն   մոդելների  𝛃1 և  𝛃2  
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գործակիցների նվազագույն քառակուսիների գնահատականները: Պարզ 

է, որ 

𝕏𝛃̂ = 𝕏1𝛃̂1 + 𝕏2𝛃̂2, 

որտեղ 

𝛃̂ = ‖
𝛃̂1
 𝛃̂2
‖,   𝛃 = ‖

𝛃1
𝛃2
‖: 

Այնուհետև նշանակենք`  
 

𝔸 =𝕏𝑇𝕏 = ‖
𝕏1
𝑇

𝕏2
𝑇‖‖𝕏1 𝕏2‖ = ‖

𝕏1
𝑇𝕏1 𝕏1

𝑇𝕏2
𝕏2
𝑇𝕏1 𝕏2

𝑇𝕏2
‖ = ‖

 𝔸11 𝔸12 
𝔸21 𝔸22

‖, 

 

𝔸−1 = ‖ 𝔸
11 𝔸12 
𝔸21 𝔸22

‖ , 

որտեղ (տե՛ս թեորեմ Հ. 27-ը) 

 𝔸11 = (𝔸11 − 𝔸12𝔸22
−1𝔸21)

−1,   𝔸22 = (𝔸22 − 𝔸21𝔸11
−1𝔸12)

−1 , 

 

 𝔸12 = − 𝔸11
−1𝔸12𝔸

22,   𝔸21 = − 𝔸22
−1𝔸21𝔸

11: 

        Լեմմա 12.2:  ℍ0  վարկածը բավարարվելու դեպքում ճիշտ է  
 

𝐞𝑅
𝑇𝐞𝑅 − 𝐞

𝑇𝐞 = 𝛃̂2
𝑇𝕏2

𝑇𝕄1𝕏2𝛃̂2 
 

ներկայացումը, որտեղ 𝕄1 = 𝔼𝑛 − 𝕏1(𝕏1
𝑇𝕏1)

−1𝕏1
𝑇-ն պրոեկցիոն մատրից է: 

Ա պ ա ց ու ց ու մ:  Օգտվելով 

ℝ𝛃̂ = ‖𝟎𝑞×(𝑘−𝑞) 𝔼𝑞‖‖
𝛃̂1
 𝛃̂2
‖ = 𝛃̂2 

պայմանից և (12.35) ներկայացումից՝ ℍ0  վարկածը բավարարվելու 

դեպքում,  կստանանք` 

 𝐞𝑅
𝑇𝐞𝑅 − 𝐞

𝑇𝒆 = (𝐫 − ℝ𝛃̂)
𝑇
[ℝ(𝕏𝑇𝕏)−1ℝ𝑇]−1(𝐫 − ℝ𝛃̂) =    

   = 𝛃̂2
𝑇[ℝ(𝕏𝑇𝕏)−1ℝ𝑇]−1 𝛃̂2:                                                        (12.37)  

Մյուս կողմից՝ ունենք` 

ℝ(𝕏𝑇𝕏)−1ℝ𝑇 = ‖𝟎𝑞×(𝑘−𝑞) 𝔼𝑞‖ 𝔸
−1  ‖

𝟎𝑞×(𝑘−𝑞)
𝔼𝑞

‖ = 
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= ‖𝟎𝑞×(𝑘−𝑞) 𝔼𝑞‖‖
 𝔸11 𝔸12 
𝔸21 𝔸22

‖‖
𝟎𝑞×(𝑘−𝑞)
𝔼𝑞

‖ = ‖ 𝔸21 𝔸22‖‖
𝟎𝑞×(𝑘−𝑞)
𝔼𝑞

‖ =  𝔸22: 

Այստեղից՝  

[ℝ(𝕏𝑇𝕏)−1ℝ𝑇]−1 = ( 𝔸22)−1 = 𝔸22 − 𝔸21𝔸11
−1𝔸12, 

այնպես որ (12.37)-ից կունենանք` 

 𝐞𝑅
𝑇𝐞𝑅 − 𝐞

𝑇𝐞 = 𝛃̂2
𝑇( 𝔸22)−1 𝛃̂2 = 𝛃̂2

𝑇(𝕏2
𝑇𝕏2 −𝕏2

𝑇𝕏1(𝕏1
𝑇𝕏1)

−𝟏𝕏1
𝑇𝕏2) 𝛃̂2 = 

 

= 𝛃̂2
𝑇𝕏2

𝑇[𝔼𝑛 − 𝕏1(𝕏1
𝑇𝕏1)

−1𝕏1
𝑇] 𝕏2𝛃̂2 = 𝛃̂2

𝑇𝕏2
𝑇𝕄1𝕏2𝛃̂2: 

𝕄1 մատրիցի համաչափությունը և իդեմպոտենտությունը ապացուցվում 

են այնպես, ինչպես թեորեմ 12.3-ի ա) կետում:        ∎ 

𝐞𝑅 = 𝐘 − 𝕏𝛃̂R վեկտորը կոչվում է ℝ𝛃 = 𝐫 «սահմանափակումներով» 

(restricted) (12.2) ռեգրեսիայի մնացորդների վեկտոր, իսկ 𝐞∗ = 𝐘 −  𝕏1𝛃̂1` 

«կարճ» (միայն 𝕏1-ի վրա) ռեգրեսիայի համար մնացորդների վեկտոր: 

Ընդհակառակն, 𝐞 = 𝐘 − 𝕏𝛃̂-ը կոչվում է «առանց սահմանափակումների» 

(«երկար») ռեգրեսիայի (unrestricted) մնացորդների վեկտոր: 

        Լեմմա 12.3:  ℍ0  վարկածը բավարարվելու դեպքում ճիշտ է 
 

𝐞𝑅
𝑇𝐞𝑅 = (𝐘 − 𝕏𝛃̂𝑅)

𝑇
(𝐘 − 𝕏𝛃̂𝑅) = (𝐘 − 𝕏1𝛃̂1)

𝑇
(𝐘 − 𝕏1𝛃̂1) = (𝐞

∗)𝑇𝐞∗ 
 

հավասարությունը: 

Ա պ ա ց ու ց ու մ: Ըստ սահմանման՝ ունենք` 

 

𝐞∗ = 𝐘 − 𝕏1𝛃̂1 = (𝔼n − 𝕏1(𝕏1
T𝕏1)

−1
𝕏1
T)𝐘 = 𝕄1𝐘, 

 

և նկատելով, որ 

𝐘 = 𝕏𝛃̂ + 𝐞 = ‖𝕏1 𝕏2‖‖
𝛃̂1
 𝛃̂2
‖ + 𝐞 = 𝕏1𝛃̂1 + 𝕏2𝛃̂2 + 𝐞, 

ապա 

𝐞∗ = 𝕄1𝐘 = 𝕄1(𝕏1𝛃̂1 + 𝕏2𝛃̂2 + 𝐞) = 𝕄1𝕏2𝛃̂2 + 𝐞 
 

(այստեղ 𝕄1𝕏1𝛃̂1 = 𝟎 և 𝕄1𝐞 = (𝔼n − 𝕏1(𝕏1
T𝕏1)

−1
𝕏1
T)  𝐞 = 𝐞, քանի որ, ըստ 

հետևանք 12.1-ի,  𝕏T𝐞 = 𝟎): 
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Այսպիսով, վերջնական կստանանք` 

(𝐞∗)𝑇𝐞∗ = (𝐞 +𝕄1𝕏2𝛃̂2)
𝑇
(𝐞 +𝕄1𝕏2𝛃̂2) = 𝐞

𝑇𝐞 + 𝐞𝑇𝕄1𝕏2𝛃̂2 + 𝛃̂2
𝑇𝕏2

𝑇𝕄1
𝑇𝐞 + 

 

+ 𝛃̂2
𝑇𝕏2

𝑇𝕄1
𝑇𝕄1𝕏2𝛃̂2 = 𝐞

𝑇𝐞 + 𝛃̂2
𝑇𝕏2

𝑇𝕄1
𝑇𝕄1𝕏2𝛃̂2 

(այստեղ  𝕏2
𝑇𝐞 = 𝟎 և 𝕄1-ը պրոեկցիոն մատրից է): 

 Այժմ ապացույցն անմիջապես հետևում է լեմմա 12.2-ից:    ∎                
 

 Թեորեմ 12.10-ից և լեմմա 12.3-ից կստանանք` 

        Թեորեմ 12.11:  ℍ0  վարկածը բավարարվելու դեպքում 
 

𝐹 =
((𝐞∗)𝑇𝐞∗ − 𝐞T𝐞) 𝑞⁄

𝐞𝑇𝐞 (𝑛 − 𝑘)⁄
 ~ 𝕊(𝑞, 𝑛 − 𝑘): 

 5.  Դիտարկենք ℍ0 : ℝ𝛃 = 𝐫 գծային սահմանափակումների վարկածի 

ստուգման մի այլ մասնավոր դեպք՝ 

ℍ0 : 𝐜
𝑇𝛃 = 𝑚 (𝑚 = const), 

որտեղ 𝑞 × 𝑘 -չափանի ℝ մատրիցը փոխարինվում է 𝐜𝑇 = ‖𝑐1, … , 𝑐𝑘‖ տող 

վեկտորով, այսինքն՝ 𝑞 = 1: Վարկածը ստուգվում է 𝕊(1, 𝑛 − 𝑘)- բաշխում 

ունեցող 𝑭 - վիճականու օգնությամբ (տե՛ս (12.30)):  

ℍ0  վարկածը կարելի է ստուգել նաև՝ օգտագործելով 𝕥 - վիճականին: 

Տեղի ունի հետևյալ պնդումը՝  

        Թեորեմ 12.12: Եթե ճիշտ է ℍ0  վարկածը, ապա 
 

𝕥 =
𝐜𝑇𝛃 ̂ − 𝑚

𝕤√𝐜𝑇(𝐗𝑇𝐗)−1𝐜
 ~ 𝕋(𝑛 − 𝑘): 

Ա պ ա ց ու ց ու մ: Քանի որ, ըստ ենթադրության, դիտարկվում է 

նորմալ ռեգրեսիոն մոդելը, ապա 

𝐜𝑇𝛃 ̂~ ℕ (𝐜𝑇𝛃, σ
𝐜𝑇𝛃̂
𝟐 ), 

որտեղ  σ
𝐜𝑇𝛃̂
𝟐 ∶= var (𝐜𝑇𝛃 ̂) = 𝐜𝑇𝕍(𝛃 ̂)𝐜 = σ2𝐜𝑇(𝕏𝑇𝕏)−1𝐜 ∶ 

Այստեղից՝ var (𝐜𝑇𝛃 ̂) ցրվածքի գնահատականը կլինի 
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𝕤
𝐜𝑇𝛃 ̂
2 ∶=  σ

𝐜𝑇𝛃̂
𝟐̂ = var̂ (𝐜𝑇𝛃 ̂) = σ2̂𝐜𝑇(𝕏𝑇𝕏)−1𝐜 = 𝕤𝟐𝐜𝑇(𝕏𝑇𝕏)−1𝐜,  

որտեղ 

𝕤2 =
𝐞𝑇𝐞

𝑛 − 𝑘
∶ 

Ակնհայտ է, որ 

𝐜𝑇𝛃 ̂ − 𝐜𝑇𝛃 ~ ℕ(0, σ
𝐜𝑇𝛃̂
𝟐 ):  

Դիտարկենք  

𝕥 =
𝐜𝑇𝛃 ̂ − 𝐜𝑇𝛃

𝕤𝐜𝑇𝛃 ̂
=
(𝐜𝑇𝛃 ̂ − 𝐜𝑇𝛃) σ𝐜𝑇𝛃 ̂⁄

𝕤𝐜𝑇𝛃 ̂ σ𝐜𝑇𝛃 ̂⁄
 

վիճականին: Քանի որ  

𝕤𝐜𝑇𝛃 ̂

σ𝐜𝑇𝛃 ̂
=
𝕤

σ
= √

1

𝑛 − 𝑘
 𝜒𝑛−𝑘
2  ,  

 

որտեղ (տե՛ս թեորեմ 12.4 դ)) 

𝜒𝑛−𝑘
2 = (𝑛 − 𝑘) 𝕤2 σ2 ~⁄  ℍ2(𝑛 − 𝑘), 

 ապա 

𝕥 =
𝜉0

√ 1
𝑛 − 𝑘

 𝜒𝑛−𝑘
2

 ~ 𝕋(𝑛 − 𝑘), 

որտեղ 

𝜉0 =
𝐜𝑇𝛃 ̂ − 𝐜𝑇𝛃

σ𝐜𝑇𝛃 ̂
 ~ ℕ(0, 1): 

 

Այսպիսով, թեորեմն ապացուցվեց:           

Դիտողություն 12.9: Այստեղ քննարկվող դեպքի համար 𝑭 – վիճա-

կանին (տե՛ս (12.30)) ընդունում է հետևյալ տեսքը՝ 

𝐹 =
(𝐜𝑇𝛃 ̂ − 𝐦)

𝑇
[𝐜𝑇(𝕏𝑇𝕏)−1𝐜]−1(𝐜𝑇𝛃 ̂ −𝐦)

𝕤2
 ~ 𝕊(1, 𝑛 − 𝑘),  

որտեղից պարզ է, որ 𝐹 = 𝕥 
2:  Հետևաբար՝ ℍ0  վարկածը կարելի է ստու-

գել՝ կիրառելով ինչպես 𝑭 – վիճականին, այնպես էլ  𝕥  – վիճականին: 
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Օրինակ 12.1 (Չոուի (Chow) հայտանիշը):  Դիցուք  տրված  է  (𝐗′)𝑛 =

= ‖𝐗1, … , 𝐗𝑛‖  և  (𝐗′′)𝑚 = ‖𝐗𝑛+1, … , 𝐗𝑛+𝑚‖ երկու բազմաչափ նմուշ՝ 

 𝐗𝑖
 = ‖1,  𝑋𝑖2, … ,  𝑋𝑖𝑘‖

𝑇, 𝑖 = 1,… , 𝑛, 𝐗𝑛+𝑗
 = ‖1,  𝑋𝑛+𝑗 2, … ,  𝑋𝑛+𝑗 𝑘‖

𝑇 
,  

𝑗 = 1,… ,𝑚: Կառուցված են այդ նմուշներին համապատասխանող H 1. և H 

3. պայմանները բավարարող ռեգրեսիոն մոդելները՝ 

𝑌𝑖 = 𝛽1
′ + 𝛽2

′𝑋𝑖2 +⋯+ 𝛽𝑘
′𝑋𝑖𝑘 + 𝜀𝑖

′,   𝑖 = 1,… , 𝑛,                   (12.38) 
 

𝑌𝑖 = 𝛽1
′′ + 𝛽2

′′𝑋𝑖2 +⋯+ 𝛽𝑘
′′𝑋𝑖𝑘 + 𝜀𝑖

′′,   𝑖 = 𝑛 + 1,… , 𝑛 + 𝑚,           (12.39) 

որտեղ 𝜀𝑖
′ ~ ℕ(0, 𝜎′) և 𝜀𝑖

′′ ~ ℕ(0, 𝜎′′) միմյանցից անկախ պատահական մե-

ծություններ են: Նշանակենք համապատասխան ռեգրեսիոն մատրից-

ները` 

𝕏′ = ‖
1 𝑋12  … 𝑋1𝑘
 . . ……………
 1 𝑋𝑛2  … 𝑋𝑛𝑘

‖,   𝕏′′ = ‖
1 𝑋𝑛+1 2  … 𝑋𝑛+1 𝑘
……………………
 1 𝑋𝑛+𝑚 2  … 𝑋𝑛+𝑚 𝑘

‖,  

 

և  𝕏 = ‖
𝕏′

𝕏′′
‖ ` 𝐗𝑛+𝑚 = ‖𝐗1, … , 𝐗𝑛+𝑚‖ միացյալ նմուշին համապատասխա-

նող բլոկ մատրիցը: Նշանակենք, բացի այդ՝ 

𝛃′ = ‖𝛽1
′ , … , 𝛽𝑘

′‖𝑇 ,   𝛃′′ = ‖𝛽1
′′, … , 𝛽𝑘

′′‖𝑇 ,   𝛃 = ‖
𝛃′

𝛃′′
‖ , 

𝛆′ = ‖𝜀1
′ , … , 𝜀𝑘

′ ‖𝑇 ,   𝛆′′ = ‖𝜀𝑛+1
′′ , … , 𝜀𝑛+𝑚

′′ ‖𝑇 ,   𝛆 = ‖
𝛆′

𝛆′′
‖, 

 

𝐘′ = ‖𝑌1, … , 𝑌𝑛‖
𝑇 ,       𝐘′′ = ‖𝑌𝑛+1, … , 𝑌𝑛+𝑚‖

𝑇∶ 

Այդ նշանակումների օգնությամբ (12.38) և (12.39) մոդելները կներկա-

յացվեն համապատասխանաբար 

𝐘′ = 𝕏′𝛃′ + 𝛆′ (1)  և  𝐘′′ = 𝕏′′𝛃′′ + 𝛆′′ (2)                        (12.40) 

տեսքով, որտեղ  𝜺′ ~ ℕ𝑘(𝟎, σ
′𝔼k)  և  𝛆′′ ~ ℕ𝑚(𝟎, σ

′′𝔼𝑚) միմյանցից անկախ 

վեկտորներ են: 

Դիտարկվում է  

ℍ0 ∶  𝛃
′ = 𝛃′′,  σ′ = σ′′  

 

վարկածը ստուգելու խնդիրը: Այսինքն՝ պահանջվում է պարզել՝ նո՞ւյնն է, 

թե՞ ոչ այդ մոդելներին համապատասխանող Y-ների (արձագանքների) 
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կախվածությունը նույնատիպ գործոններից (այսինքն՝ պարզել՝ համընկ-

նո՞ւմ են, թե՞ ոչ այդ ռեգրեսիոն մոդելները):  
 

Որպես օրինակ դիտարկենք աշխատավարձի (Y) կախվածությունը 

𝑋𝑗, 𝑗 = 1,… , 𝑘 գործոններից (ռեգրեսորներից), որոնք են, օրինակ, 

տարիքը, աշխատանքային ստաժը, կրթությունը և այլն: Պահանջվում է 

պարզել՝ տարբերվո՞ւմ է, թե՞ ոչ տղամարդկանց և կանանց միջև այդ 

կախվածությունը:  
 

Այժմ այս խնդիրը բերենք գծային սահմանափակումների վարկածի 

ստուգման խնդրի տեսքին: 

Առանց սահմանափակումների (unrestricted) ռեգրեսիան այստեղ 

(12.38) և (12.39) ռեգրեսիաներն են, որի համար մնացորդների քառա-

կուսիների գումարն է՝  

𝐞𝑇𝐞 = (𝐞′)𝑇𝐞′ + (𝐞′′)𝑇𝐞′′   

կամ 

  𝐸𝑆𝑆 = (𝐸𝑆𝑆)
′ + (𝐸𝑆𝑆)′′ , 

որտեղ 𝐞′ = 𝐘′ − 𝕏′𝛃′̂-ը և 𝐞′′ = 𝐘′′ − 𝕏′′𝛃′′̂-ը (12.40) ռեգրեսիաների մնա-

ցորդներն են, իսկ 𝛃′̂-ը և 𝛃′′̂-ը՝ 𝛃′ և 𝛃′′ պարամետրերի նվազագույն քա-

ռակուսիների գնահատականները: Պարզ է, որ (𝐞′)𝑇𝐞′ անդամի ազատու-

թյունների աստիճանը հավասար է (𝑛 − 𝑘)-ի, իսկ (𝐞′′)𝑇𝐞′′ անդամինը՝ 

(𝑚 − 𝑘)-ի, այնպես որ 𝐞𝑇𝐞 անդամի ազատությունների աստիճանը կլինի 

(𝑛 − 𝑘) + (𝑚 − 𝑘) = 𝑛 +𝑚 − 2𝑘 : 

ℍ0 վարկածը բավարարվելու դեպքում 𝐘 = 𝕏𝛃 + 𝛆 սահմանափա-

կումներով (restricted) ռեգրեսիան 𝛃 պարամետրը գնահատելուց հետո 

ընդունում է  𝐘 = 𝕏𝛃̂ + 𝐞R տեսքը:  

Նշանակենք` 𝐸𝑆𝑆𝑅 = 𝐞R
𝑇𝐞R: Քանի որ ℍ0 վարկածը պարունակում է 𝛃 

պարամետրի վերաբերյալ 𝒌 հատ սահմանափակում, ապա (տե՛ս թեորեմ 

12.10)՝ 

𝐹 =
(𝐞R
𝑇𝐞R − 𝐞

𝑇𝐞) 𝑘⁄

𝐞𝑇𝐞 (𝑛 +𝑚 − 2𝑘 )⁄
=
(𝐸𝑆𝑆𝑅 − 𝐸𝑆𝑆 ) 𝑘⁄

𝐸𝑆𝑆 (𝑛 + 𝑚 − 2𝑘)⁄
 ~  𝕊(𝑘, 𝑛 + 𝑚 − 2𝑘): 
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Հետևաբար՝ 𝛼 նշանակալիության մակարդակով ℍ0 վարկածը կհերքվի, 

եթե 𝑭 – վիճականու ընդունած արժեքը գերազանցի 𝑭 – բաշխման կրի-

տիկական արժեքը՝ 

𝑓 > 𝑆𝛼(𝑘, 𝑛 + 𝑚 − 2𝑘): 

 

       Խնդիրներ 

 

12.9.  Դիցուք տրված է  𝐘 = 𝕏𝛃 + 𝛆  նորմալ ռեգրեսիոն մոդելը: 

Դիտարկումների արդյունքում ստացվել են հետևյալ տվյալները՝ 
 

𝕏𝑇𝕏 = ‖
33 0 0
0 40 20
0 20 60

‖,    𝕏𝑇𝐘 = ‖
132
24
92
‖,    ∑(𝑌𝑖 − 𝑌̂𝑖)

2
= 150: 

𝑛

𝑖=1

 

 

ա)  Ստանալ  𝐘 = 𝕏𝛃̂  ռեգրեսիայի հավասարումը, 

բ)   ստուգել  0.05  մակարդակով  𝛽2  գործակցի նշանակալիությունը: 
 

 

Պատասխան՝  ա)  𝑦̂𝑖 = 4 − 0.2 𝑋𝑖1 + 1.6 𝑋𝑖2,  բ)  𝛽2 գործակիցը նշանակալի է:  
 

 

12.10. Դիտարկվում է 𝐘 = 𝕏𝛃 + 𝛆 նորմալ ռեգրեսիոն մոդելը, ընդ 

որում՝  𝕍(𝛆) = 2𝔼𝑛: Հայտնի է, որ  
 

𝕏𝑇𝕏 = ‖
5 2
2 4
‖  և  𝛽̂1 = 3,   𝛽̂2 = 2: 

 

ա) Կառուցել 95 %-ոց վստահության միջակայքը 𝜃 = 𝛽1 + 𝛽2 պա-

րամետրի համար, 

բ)  կառուցել  95 % -ոց վստահության տիրույթը  𝛃  վեկտորի համար: 
 

Ցուցում՝ ա) օգտվել 𝐜𝑇𝛃 ̂ − 𝐜𝑇𝛃 ~ ℕ (0, σ
𝐜T𝛃̂
𝟐 ) պայմանից, որտեղ  𝐜𝑇 = (1, 1),  

բ)  օգտվել  𝛃̂ ~ ℕ𝒌(𝛃, σ
2(𝕏𝑇𝕏)−1)  պայմանից: 

 

Պատասխան՝ ա) 𝜃 ∈ (3.45, 6.55), բ) 𝛃 ∈ {(𝛽1, 𝛽2)
𝑇: 5(𝛽1 − 3)

2 + 4(𝛽1 − 3)(𝛽2 −

−2) + 4(𝛽2 − 2)
2 < 11.984}:  

12.11. Տրված է 𝐘 = 𝕏𝛃 + 𝛆 նորմալ գծային ռեգրեսիոն մոդելը: Ստու-

գել  𝛼  նշանակալիության մակարդակով հետևյալ վարկածները՝  

 

       ա) ℍ0 :  𝛽2 + 𝛽3 = 1,   բ) ℍ0: 𝛽3 = 𝛽4 :  
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Պատասխան՝  վարկածը հերքվում է, եթե 

|𝑡| > 𝑡𝛼 2⁄ (𝑛 − 𝑘),   𝑡 ∶= 𝑇(𝜔0) `  ա) 𝑇 =
𝛽̂2 + 𝛽̂3 − 1

𝕤(𝛽̂2+𝛽̂3)
 ,   բ) 𝑇 =

𝛽̂3 − 𝛽̂4
𝕤(𝛽̂3−𝛽̂4)

∶ 

12.12. Դիտարկվում են երկու նորմալ գծային ռեգրեսիոն մոդելներ: 

Հաշվարկների արդյունքում ստացվել է՝ 

 

(𝕏′)𝑇𝕏′ = ‖
20 20
20 25

‖ ,  (𝕏′)𝑇𝐘′ = ‖
10
20
‖,   (𝐘′)𝑇𝐘′ = 30, 

 

 

(𝕏′′)𝑇𝕏′′ = ‖
10 10
10 20

‖,   (𝕏′′)𝑇𝐘′′ = ‖
8
20
‖,   (𝐘′′)𝑇𝐘′′ = 24: 

 

 

Ստուգե՛լ՝ համընկնո՞ւմ են, թե՞ ոչ 0.05 մակարդակով այդ երկու 

մոդելները: 
 

Պատասխան՝ մոդելները համընկնում են: 

 

       § 12.6. Կանխատեսումներ ռեգրեսիոն մոդելներում 

 

Ռեգրեսիայի տեսության կարևոր խնդիրներից է անկախ փոփոխա-

կանների որոշակի արժեքների դեպքում գնահատել (կանխատեսել) 

կախյալ փոփոխականը: Տարբերվում է երկու տեսակի կանխատեսում՝ 

կետային և միջակայքային: Կետային կանխատեսման դեպքում գտնվում 

է կախյալ փոփոխականի համար «ճշգրիտ» գնահատականը, միջակայ-

քային կանխատեսման դեպքում փնտրվում է միջակայք, որում նախա-

պես տրված վստահության մակարդակով պետք է գտնվի կախյալ փոփո-

խակաի իրական արժեքը: Բացի այդ, տարբերում են ոչ պայմանական և 

պայմանական կանխատեսումների դեպք՝ կախված այն հանգամանքից, 

թե անկախ փոփոխականի արժեքները ճշգրիտ հայտնի՞ են, թե՞ տրված 

են որոշակի սխալներով:  
 

Դիցուք տրված է  

 𝐘 = 𝕏𝛃 + 𝛆                                                 (12.41) 

 



§ 12.6. Կանխատեսումներ ռեգրեսիոն մոդելներում 

241 

դասական ռեգրեսիոն մոդելը, որտեղ Y-ը` 𝑛 × 1-չափանի կախյալ փոփո-

խականների վեկտոր է, 𝕏-ը՝ 𝑛 × 𝑘-չափանի անկախ փոփոխականների 

մատրից, 𝛆-ը՝ 𝑛 × 1-չափանի սխալների վեկտոր, 𝛃-ն՝ 𝑘 × 1-չափանի 

պարամետրերի վեկտոր: 

Ենթադրվում է, որ բավարարվում են H 1. և H 2. պայմանները: 

Դիցուք, բացի այդ, տրված է  

 𝐗𝑛+1 = ‖𝑋𝑛+1 1 , … , 𝑋𝑛+1 𝑘‖
𝑇 

բացատրող փոփոխականների վեկտոր, և հայտնի է, որ համապատաս-

խան Y𝑛+1 կախյալ փոփոխականը բավարարում է (12.41) ռեգրեսիոն 

մոդելը, այսինքն՝ 

 𝑌𝑛+1 = 𝐗n+1
T 𝛃 + 𝜀𝑛+1,                                       (12.42)  

որտեղ  Ε(𝜀𝑛+1) = 0,   var (𝜀𝑛+1) = 𝜎
2  և   cov (𝜀𝑛+1,  𝜀𝑗) = 0,    𝑗 = 1, … , 𝑛:  

Պահանջվում է (𝐘, 𝕏, 𝐗𝑛+1) տվյալների օգնությամբ կանխատեսել 𝑌𝑛+1-ը: 

Ոչ պայմանական կանխատեսում  

Կետային կանխատեսում 

Ենթադրենք, որ բացատրող փոփոխականների 𝐗𝑛+1 վեկտորը 

ճշգրիտ հայտնի է:  

ա) Եթե 𝛃 և σ2 պարամետրերի արժեքները հայտնի են, ապա, որպես 

𝑌𝑛+1 -ի 𝑌̂ ∶= 𝑌̂𝑛+1 կանխատեսում, բնական է վերցնել 

𝑌̂ = E(𝑌𝑛+1) = 𝐗𝑛+1
𝑇 𝛃: 

Կանխատեսման միջին քառակուսային սխալը հավասար է 

MSE (𝑌̂) = E(𝑌𝑛+1 − 𝑌̂)
2
= E(𝜀𝑛+1

2 ) = σ2: 

Եթե լրացուցիչ ենթադրենք, որ  

 𝜀𝑛+1 = 𝑌𝑛+1 − 𝑌̂ ~ ℕ(0, σ
2) 

սխալն ունի նորմալ բաշխում, ապա (1 − 𝛼) մակարդակով կանխատես-

ման միջակայքը 𝑌𝑛+1-ի համար կլինի (𝑌̂ − σ𝑧𝛼 2⁄ , 𝑌̂ + σ𝑧𝛼 2⁄ ) միջակայքը:  
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բ) Այժմ դիցուք 𝛃 և σ2 պարամետրերն անհայտ են: Դիտարկենք 

(12.41) մոդելի 𝛃 պարամետրի նվազագույն քառակուսիների գնահատա-

կանը և 𝜎2 պարամետրի անշեղ գնահատականը` 

𝛃̂ = (𝕏𝑇𝕏)−1𝕏𝑇𝐘  և  𝜎2̂ = 𝕤2 =
1

𝑛 − 𝑘
 𝐞𝑇𝐞 =

1

𝑛 − 𝑘
 (𝐘 − 𝕏𝛃̂)

𝑇
(𝐘 − 𝕏𝛃̂): 

Որպես 𝑌𝑛+1 -ի կետային կանխատեսում վերցնենք 

𝑌̂ = 𝑌̂𝑛+1 = 𝐗𝑛+1
𝑇 𝛃 ̂                                          (12.43) 

վիճականին: 

 𝑌̃ = 𝜑(𝐘, 𝕏, 𝐗𝑛+1) վիճականին կոչվում է անշեղ գնահատական 𝑌𝑛+1-

ի համար, եթե 

E(𝑌̃) = E(𝑌𝑛+1): 

 

        Թեորեմ 12.13 (տե՛ս թեորեմ 11.10): Ըստ Y-ի գծային անշեղ գնահա-

տականների՝  
 

ℒ𝑌𝑛+1
0 (𝐘) = {𝑌̃ = 𝜑(𝐘, 𝕏, 𝐗𝑛+1): 𝑌̃ = 𝐜

𝑇𝐘  բոլոր  𝐜𝑇 ∈ ℛ𝑛,   E(𝑌̃) = E(𝑌𝑛+1)} 

դասում 𝑌̂ = 𝑌̂𝑛+1 = 𝐗𝑛+1
𝑇 𝛃̂ գնահատականը 𝑌𝑛+1-ի համար օպտիմալ է 

նվազագույն միջին քառակուսային սխալի իմաստով, այսինքն՝ 
 

E(𝑌̂ − 𝑌𝑛+1)
2
≤ E(𝑌̃ − 𝑌𝑛+1)

2
 ∀ 𝑌̃ ∈ ℒ𝑌𝑛+1

0 (𝐘): 

Ա պ ա ց ու ց ու մ: Ակնհայտ է, որ (12.43)-ում բերված 𝑌̂ վիճականին 

անշեղ գնահատական է 𝑌𝑛+1-ի համար՝  

E(𝑌̂) = 𝐗𝑛+1
𝑇 E(𝛃 ̂) = 𝐗𝑛+1

𝑇 𝛃 = E(𝑌𝑛+1): 

Այժմ, դիցուք 𝑌̃ ∈ ℒ𝑌𝑛+1
0 (𝐘)  որոշակի անշեղ գնահատական է 𝑌𝑛+1-ի 

համար: Պարզ է, որ 

E(𝑌̃) = E(𝑌𝑛+1) = 𝐗𝑛+1
𝑇 𝛃: 

Մյուս կողմից՝ ունենք՝ 

E(𝑌̃) = 𝐜𝑇E(𝐘) = 𝐜𝑇𝕏𝛃, 
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որտեղից՝ 

 (𝐗𝑛+1
𝑇 − 𝐜𝑇𝕏)𝛃 = 0: 

Այս պայմանը տեղի ունի կամայական 𝛃-ի համար, եթե 

𝐜𝑇𝕏 = 𝐗n+1
T :                                                (12.44) 

 

Ճիշտ է նաև հետևյալ նույնությունը՝ 

E [(𝑌̃ − 𝑌𝑛+1)
2
] =  E [(𝑌̃ − 𝑌̂)

2
] + E [(𝑌̂ − 𝑌𝑛+1)

2
] + 

 

+2 E[(𝑌̃ − 𝑌̂)(𝑌̂ − 𝑌𝑛+1)]:                                      (12.45) 
 

 

Ցույց տանք, որ E[(𝑌̃ − 𝑌̂)(𝑌̂ − 𝑌𝑛+1)] = 0: Համաձայն (12.42)-ի և 

(12.43)-ի՝ ունենք` 

E[(𝑌̃ − 𝑌̂)(𝑌̂ − 𝑌𝑛+1)] = 

= E(𝐜𝑇𝐘𝐗n+1
𝑇 𝛃 ̂) − E(𝐗n+1

𝑇 𝛃 ̂𝐗n+1
𝑇 𝛃 ̂) − E[𝐜𝑇𝐘(𝐗n+1

𝑇 𝛃 + εn+1)] + 

+ E[𝐗n+1
𝑇 𝛃 ̂(𝐗n+1

𝑇 𝛃 + εn+1)]:                                                 (12.46) 

Առաջին գումարելին (12.46)-ի աջ մասում կլինի (տե՛ս (12.41), (12.44)) 

հավասար  

E(𝐜𝑇𝐘𝐗𝑛+1
𝑇 𝛃 ̂) = E (𝐜𝑇𝐘(𝛃 ̂)

𝑇
𝐗𝑛+1) = E(𝐜

𝑇𝐘𝐘𝑇𝕏(𝕏𝑇𝕏)−1𝐗𝑛+1) = 

 

= 𝐜𝑇[E(𝐘𝐘𝑇)]𝕏(𝕏𝑇𝕏)−1𝐗𝑛+1 = 𝐜
𝑇(σ2𝔼𝑛 +𝕏𝛃𝛃

𝑇𝕏𝑇)𝕏(𝕏𝑇𝕏)−1𝐗𝑛+1 = 
 
 

 = σ2𝐜𝑇𝕏(𝕏T𝕏)
−1
𝐗𝑛+1 + 𝐜

𝑇𝕏𝛃𝛃𝑇𝕏𝑇𝕏(𝕏𝑇𝕏)−1𝐗𝑛+1 = 
 

 

= σ2𝐗𝑛+1
𝑇 (𝕏𝑇𝕏)−1𝐗𝑛+1 + 𝐗𝑛+1

𝑇 𝛃𝛃𝑇𝐗𝑛+1:              (12.47) 

Երկրորդ գումարելիի համար (տե՛ս (12.9)) կստանանք`  

E(𝐗𝑛+1
𝑇 𝛃 ̂𝐗𝑛+1

𝑇 𝛃 ̂) = 𝐗𝑛+1
𝑇 {E [𝛃 ̂(𝛃 ̂)

𝑇
]} 𝐗𝑛+1 = 

 

= 𝐗𝑛+1
𝑇 {E[(𝛃 + (𝕏𝑇𝕏)−1𝕏𝑇𝛆)(𝛃𝑇 + 𝛆𝑇𝕏(𝕏𝑇𝕏)−1)]}𝐗𝑛+1 = 

 

 

= 𝐗𝑛+1
𝑇 (𝛃𝛃𝑇 + σ2(𝕏𝑇𝕏)−1)𝐗𝑛+1 = 
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= 𝐗𝑛+1
𝑇 𝛃𝛃𝑇𝐗𝑛+1 + σ

2𝐗𝑛+1
𝑇 (𝕏𝑇𝕏)−1𝐗𝑛+1:                   (12.48) 

 

Երրորդ գումարելին (տե՛ս (12.44)) կլինի  
 

E[𝐜𝑇𝐘(𝐗𝑛+1
𝑇 𝛃 + ε𝑛+1)] = 𝐜

𝑇[E(𝐘)]𝛃𝑇𝐗𝑛+1 = 𝐜
𝑇𝕏𝛃𝛃𝑇𝐗𝑛+1 = 𝐗𝑛+1

𝑇 𝛃𝛃T𝐗𝑛+1: 
 

Չորրորդ գումարելին հավասար է 
 

E[𝐗𝑛+1
𝑇 𝛃 ̂(𝐗𝑛+1

𝑇 𝛃 + ε𝑛+1)] = 𝐗𝑛+1
𝑇 [E(𝛃 ̂)]𝛃𝑇𝐗𝑛+1 = 𝐗𝑛+1

𝑇 𝛃𝛃𝑇𝐗𝑛+1:  (12.49) 

 

Այժմ տեղադրելով (12.47) - (12.49) արտահայտությունները (12.46) 

բանաձևի մեջ՝ կստանանք` 

E[(𝑌̃ − 𝑌̂)(𝑌̂ − 𝑌𝑛+1)] = 0: 

Այսպիսով (տե՛ս (12.45)), թեորեմն ապացուցված է:  

       Լեմմա 12.4 (տե՛ս լեմմա 11.6-ը): 𝑌𝑛+1 -ի 𝑌̂ = 𝐗𝑛+1
𝑇 𝛃̂ գնահատականի 

միջին քառակոսային սխալն ունի հետևյալ ներկայացումը ՝ 

∆2 ∶= MSE (𝑌̂) = E [(𝑌𝑛+1 − 𝑌̂)
2
] = σ2(1 + 𝐗𝑛+1

𝑇 (𝕏𝑇𝕏)−1𝐗𝑛+1):    (12.50) 

Ա պ ա ց ու ց ու մ: Կատարելով ակնհայտ ձևափոխություններ և նկա-

տի ունենալով cov (𝜀𝑛+1, 𝜀𝑗) = 0, 𝑗 = 1, … , 𝑛 պայմանները (տե՛ս (12.9))՝ 

կստանանք`  
 

𝑀𝑆𝐸 (𝑌̂) = E [(𝑌𝑛+1 − 𝑌̂)
2
] = E [(𝐗𝑛+1

𝑇 𝛃 ̂ − 𝐗𝑛+1
𝑇 𝛃 − 𝜀𝑛+1)

2
] = 

 

= E [(𝐗𝑛+1
𝑇 (𝛃 ̂ − 𝛃) − ε𝑛+1)

2
] = 

 

= 𝐗𝑛+1
𝑇 E [(𝛃 ̂ − 𝛃)(𝛃 ̂ − 𝛃)

𝑇
] 𝐗𝑛+1 + E(ε𝑛+1

2 ) = 
 

 

= 𝐗𝑛+1
𝑇 (𝕏𝑇𝕏)−1𝕏𝑇[E(𝛆𝛆𝑇)]𝕏(𝕏𝑇𝕏)−1𝐗𝑛+1 + 

 

 

+ E(𝜀𝑛+1
2 ) = σ2𝐗𝑛+1

𝑇 (𝕏T𝕏)
−1
𝐗𝑛+1 + σ

2 = σ2(1 + 𝐗𝑛+1
𝑇 (𝕏𝑇𝕏)−1𝐗𝑛+1): 

Դիտողություն 12.10: Քանի որ σ2 ցրվածքը սովորաբար անհայտ է, 

ապա, փոխարինելով (12.50)-ում σ2-ին իր 𝕤2 գնահատականով, 𝑌𝑛+1-ի 
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𝛿2 ∶= ∆2̂ միջին քառակուսային սխալի գնահատականի համար կստա-

նանք` 
 

𝛿2 = 𝕤2(1 + 𝐗𝑛+1
𝑇 (𝕏𝑇𝕏)−1𝐗𝑛+1):                           (12.51)  

 

Միջակայքային կանխատեսում  

        Թեորեմ 12.14 (տե՛ս թեորեմ 11.11-ը): Եթե (12.41) մոդելը բավարա-

րում  է   H 1.  և   H 3.  պայմանները   ( նորմալ  ռեգրեսիոն  մոդել  է  ),   և   

𝜀𝑛+1~ ℕ(0, σ
2), ապա 

𝕥 =
𝑌𝑛+1 − 𝑌̂

𝛿
 ~ 𝕋(𝑛 − 𝑘) 

 

վիճականին ունի (𝑛 − 𝑘) ազատության աստիճաններով Ստյուդենտի (t -) 

բաշխում : 

Ա պ ա ց ու ց ու մ: Ակնհայտ է, որ  

𝑌̂ ~ ℕ (𝐗𝑛+1
𝑇 𝛃, 𝕍(𝑌̂)), 

որտեղ 𝕍(𝑌̂) = 𝐗𝑛+1
𝑇 𝕍(𝛃 ̂) 𝐗𝑛+1 = σ2𝐗𝑛+1

𝑇 (𝕏𝑇𝕏)−1𝐗𝑛+1 = ∆2 − 𝜎2: Այնպես 

որ՝ 

𝑌̂ ~ ℕ( 𝐗𝑛+1
𝑇 𝛃,  ∆2 − 𝜎2): 

Մյուս կողմից՝  

 𝑌𝑛+1 ~ ℕ( 𝐗𝑛+1
𝑇 𝛃, 𝜎2), 

 

հետևաբար՝ քանի որ 𝑌̂ -ը և 𝑌𝑛+1-ը անկախ են (cov (𝑌̂, 𝑌𝑛+1) = 0), ապա 
 

𝑌𝑛+1 − 𝑌̂ ~ ℕ(0, ∆
2), 

որտեղից՝ 

𝜉0 =
𝑌𝑛+1 − 𝑌̂

∆
 ~ ℕ(0, 1):                             (12.52)  

Այնուհետև, նկատի ունենալով (12.50)-ը և (12.51)-ը, կստանանք`  
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𝛿

∆
=
𝕤

σ
 ,                                                     (12.53) 

 

իսկ քանի որ (տե՛ս թեորեմ 12.4-ի դ) կետը) 

𝜒𝑛−𝑘
2 = (𝑛 − 𝑘)

𝕤2

σ2
 ~ ℍ2(𝑛 − 𝑘), 

ապա 

𝕤

σ
= √

1

𝑛 − 𝑘
 𝜒𝑛−𝑘
2  :                                             (12.54) 

Այժմ ցույց տանք, որ  

 𝑌𝑛+1 − 𝑌̂  = − 𝐗𝑛+1
𝑇 (𝛃 ̂ − 𝛃) + 𝜀𝑛+1  և  𝕤2 = 𝐞𝑇𝐞 (𝑛 − 𝑘)⁄  

վիճականիներն անկախ են: Իրոք, ըստ թեորեմ 12.4-ի գ) կետի, 𝛃 ̂ գնահա-

տականն անկախ է 𝕤2 վիճականուց, իսկ 𝜀𝑛+1 պատահական մեծությունը 

անկախ է 𝛆 = (𝜀1, … , 𝜀𝑛)
𝑇 սխալների վեկտորից (cov ( 𝜀𝑖, 𝜀𝑛+1) = 0): Բայց, 

քանի  որ 𝐞 = 𝕄𝛆,  ապա 𝜀𝑛+1-ն  անկախ է  𝐞  վեկտորից,  ուստի  և՝  

 𝕤2 = 𝐞𝑇𝐞 (𝑛 − 𝑘)⁄  վիճականուց: Այնուհետև, նկատելով, որ 𝛃 ̂ = 𝛃 +

+(𝕏𝑇𝕏)−1𝕏𝑇𝛆 վեկտորն ու 𝜀𝑛+1 պատահական մեծությունն ունեն 

համատեղ նորմալ բաշխում, ապա  𝑌𝑛+1 − 𝑌̂  և  𝕤2 վիճականիներն 

անկախ են:  

Այսպիսով, քանի որ 𝜉0 և 𝜒𝑛−𝑘
2  պատահական մեծություններն անկախ 

են, ապա (12.52), (12.53) և (12.54)-ից բխում է` 
 

𝕥 =
𝑌𝑛+1 − 𝑌̂

𝛿
=

 𝜉0

√ 1
𝑛 − 𝑘

 𝜒𝑛−𝑘
2

 ~ 𝕋(𝑛 − 𝑘): 

Դիտողություն 12.11: Թեորեմ 12.14-ից հետևում է, որ 𝛾 = 1 − 𝛼 մա-

կարդակով վստահության միջակայքը 𝑌𝑛+1-ի համար (𝑌̂ ∓ 𝛿𝑡𝛼 2⁄ (𝑛 − 𝑘)) 

միջակայքն է, այսինքն՝ 

P (𝑌̂ − 𝛿𝑡𝛼 2⁄ (𝑛 − 𝑘) < 𝑌𝑛+1 < 𝑌̂ + 𝛿𝑡𝛼 2⁄ (𝑛 − 𝑘)) = 1 − 𝛼: 
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Օրինակ 12.2: Զույգային գծային ռեգրեսիոն մոդելի դեպքում, օգտվե-

լով  լեմմա 12.4-ից,  ստանանք 𝑌𝑛+1-ի և 𝑌̂-ի միջև  ∆2 = E(𝑌𝑛+1 − 𝑌̂)
2
 միջին 

քառակուսային շեղման բանաձևը (տե՛ս լեմմա 11.6-ը): 

 

       Դիցուք տրված է H 1. և H 2. պայմանները բավարարող  

𝑌𝑖 = 𝛽1 + 𝛽2𝑋𝑖 + 𝜀𝑖,   𝑖 = 1,   … ,   𝑛                                 (12.55) 

զույգային գծային ռեգրեսիոն մոդելը: Նշանակենք  𝕏 = ‖
1 𝑋1
⋮ ⋮
1 𝑋𝑛

‖-ով 𝑛 × 2- 

 

չափանի ռեգրեսիոն մատրիցը,  𝛃 = ‖𝛽1, 𝛽2‖
𝑇 , 𝛆 = ‖𝜀1, … , 𝜀𝑛‖

𝑇:   

Ենթադրենք, բացի այդ, որ դիտվում է որոշակի 𝑋𝑛+1 արժեք, որին հա-

մապատասխանող (անհայտ) 𝑌𝑛+1 արժեքը բավարարում է (12.55) 

մոդելին, որտեղ E(𝜀𝑛+1) = 0, var (𝜀𝑛+1) = σ
2 և cov (𝜀𝑛+1, 𝜀𝑗) = 0, 𝑗 = 1,… , 𝑛: 

Նշանակենք  𝐗̂𝑛+1 = ‖1,𝑋𝑛+1‖
𝑇:  

Այժմ 𝐘 = 𝕏𝛃 + 𝛆 մոդելի համար կիրառենք լեմմա 12.4 -ը:  

Նախ գտնենք (𝕏𝑇𝕏)−1 մատրիցը: Ունենք՝ 
 

 

𝕏𝑇𝕏 = ‖
1 …  1
 𝑋1 …  𝑋𝑛

‖‖
1 𝑋1
⋮ ⋮
1 𝑋𝑛

‖ = ‖
𝑛 ∑𝑋𝑖
∑𝑋𝑖 ∑𝑋𝑖

2‖,  

որտեղից` 

 (𝕏𝑇𝕏)−1 =
1

𝑛2𝑆𝑋
2  ‖ 

∑𝑋𝑖
2 −∑𝑋𝑖

−∑𝑋𝑖 𝑛
‖: 

 

Համաձայն (12.50) բանաձևի՝ գտնենք ∆2 = E [(𝑌𝑛+1 − 𝑌̂)
2
] միջին քառա-

կուսային շեղումը: Ունենք՝ 
 

𝐗̂𝑛+1
𝑇 (𝕏𝑇𝕏)−1𝐗̂𝑛+1 =

1

𝑛2𝑆𝑋
2
‖1, 𝑋𝑛+1‖‖

∑𝑋𝑖
2 −∑𝑋𝑖

−∑𝑋𝑖 𝑛
‖‖

1
 𝑋𝑛+1

‖ = 

 

 

=
1

𝑛2𝑆𝑋
2 ‖∑𝑋𝑖

2 − 𝑋𝑛+1∑𝑋𝑖 , −∑𝑋𝑖 + 𝑛𝑋𝑛+1‖‖
1

 𝑋𝑛+1
‖ = 
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=
1

𝑛2𝑆𝑋
2  ( ∑𝑋𝑖

2 − 2 𝑋𝑛+1∑𝑋𝑖 + 𝑛𝑋𝑛+1
2  ) = 

 

 

=
1

𝑛2𝑆𝑋
2 ( ∑𝑋𝑖

2 − 𝑛(𝐗̅)2 + 𝑛(𝐗̅)2 − 2𝑛𝑋𝑛+1𝐗̅ + 𝑛𝑋𝑛+1
2 ) = 

 

=
1

𝑛2𝑆𝑋
2
(𝑛𝑆𝑋

2 + 𝑛(𝑋𝑛+1 − 𝐗̅)
2) =

1

𝑛
+
(𝑋𝑛+1 − 𝐗̅)

2

∑(𝑋𝑖 − 𝐗̅)
2
∶ 

 

Այսպիսով (տե՛ս (12.50))՝  

∆2= E [(𝑌𝑛+1 − 𝑌̂)
2
] = 𝜎2 (1 +

1

𝑛
+
(𝑋𝑛+1 − 𝐗̅)

2

∑(𝑋𝑖 − 𝐗̅)
2
) , 

որը համընկնում է լեմմա 11.6-ում ստացված արտահայտության հետ: 

Դիտողություն 12.12: H 1. և H 3. պայմանները բավարարվելու դեպ-

քում (12.55) նորմալ ռեգրեսիոն մոդելի համար թեորեմ 12.14-ի տարբե-

րակը պնդում է, որ 

 𝕥 =
𝑌𝑛+1−𝑌̂

𝛿
 ~ 𝕋(𝑛 − 2), 

որտեղ  

𝑌̂ = 𝐗̂𝑛+1
𝑇 𝛃̂ = ‖1, 𝑋𝑛+1‖‖

𝛽̂1
𝛽̂2
‖ = 𝛽̂1 + 𝛽̂2𝑋𝑛+1, 

 

 

𝛽̂1 = 𝐘− 𝛽̂2 𝐗̅,   𝛽̂2 =
∑𝑋𝑖𝑌𝑖 − 𝑛𝐗 ̅𝐘 

∑(𝑋𝑖 − 𝐗̅)
2
 , 

 

 

𝛿 = 𝕤 √1 +
1

𝑛
+
( 𝑋𝑛+1 − 𝐗̅)

2

∑(𝑋𝑖 − 𝐗̅)
2
 ,   𝕤2 =

1

𝑛 − 2
 ∑(𝑌𝑖 − 𝑌̂)

2
∶ 

Այստեղից հետևում է, որ 𝛾 = 1 − 𝛼 մակարդակով վստահության մի-

ջակայքը 𝑌𝑛+1-ի համար (𝑌̂ − 𝛿𝑡𝛼 2⁄ (𝑛 − 2), 𝑌̂ + 𝛿𝑡𝛼 2⁄ (𝑛 − 2)) միջակայքն է: 

Պայմանական կանխատեսում  

Դիտարկվում է (12.41) ռեգրեսիոն մոդելը, բայց, ի տարբերություն 

նախորդ դեպքի, ենթադրենք, որ  𝐗𝑛+1 փոփոխականի արժեքը ճշգրիտ 
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հայտնի չէ, և այն դիտվում է որոշակի 𝐮 պատահական սխալի ճշտու-

թյամբ, այսինքն՝ 

𝐳 = 𝐗𝑛+1 + 𝐮:                                              (12.56) 
 

Կրկին համարվում է, որ  𝐗𝒏+𝟏-ը բավարարում է 

𝑌𝑛+1 = 𝐗𝑛+1
𝑇 𝛃 + 𝜀𝑛+1                                      (12.57) 

պայմանը, որտեղ E(𝜀𝑛+1) = 0, var (𝜀𝑛+1) = 𝜎
2 և cov (𝜀𝑛+1,  𝜀𝑗) = 0, 𝑗 = 1,

… , 𝑛: Դիցուք (12.56)-ում մասնակցող 𝐮 սխալը 𝑘 × 1 − չափանի պա-

տահական վեկտոր է, որն անկախ է (𝜀𝟏, … ,  𝜀𝑛, 𝜀𝑛+1)
𝑇 վեկտորից, և 

E(𝐮) = 𝟎, 𝕍(𝐮) = σ𝑢
2𝔼𝑘:  

Որպես 𝑌𝑛+1 -ի կանխատեսում դիտարկենք 

𝑌̂ ∶= 𝑌̂𝑛+1 = 𝐳
𝑇𝛃̂                                           (12.58) 

վիճականին: Նշանակենք  𝑒 = 𝑌𝑛+1 − 𝑌̂-ով կանխատեսման սխալը:   

        Թեորեմ 12.15: Դիցուք տրված է (12.41) ռեգրեսիոն մոդելը: 𝑌𝑛+1 

արժեքի 𝑌̂ գնահատականը (կանխատեսումը) անշեղ է և ունի հետևյալ 

միջին քառակուսային սխալ՝ 
 

∆2 =MSE (𝑌̂) = E [(𝑌𝑛+1 − 𝑌̂)
2
] = 

 

= σ2(1 + 𝐗𝑛+1
𝑇 (𝕏𝑇𝕏)−1𝐗𝑛+1σ𝑢

2  tr[(𝕏𝑇𝕏)−1] ) + σ𝑢
2  𝛃𝑇𝛃:            (12.59) 

Ա պ ա ց ու ց ու մ (տե՛ս [10]): Քանի որ 𝐮 և 𝛃̂ վեկտորներն անկախ են, 

և E(𝐮) = 𝟎, ապա 

E(𝑒) = E(𝐳𝑇𝛃̂) − 𝐗𝑛+1
𝑇 𝛃 = E[(𝐗𝑛+1 + 𝐮)

𝑇𝛃̂] − 𝐗𝑛+1
𝑇 𝛃 = 

= 𝐗𝑛+1
𝑇 𝛃 + E(𝐮𝑇𝛃̂) − 𝐗𝑛+1

𝑇 𝛃 = 0։ 

Այսինքն՝ 𝑌𝑛+1 արժեքի համար (12.58)-ում սահմանված 𝑌̂ գնահա-

տականն անշեղ է: 

       Մյուս կողմից, հաշվի առնելով (12.56) - (12.58) բանաձևերը և   

𝛃̂ = 𝛃 + (𝕏𝑇𝕏)−1𝕏𝑇𝛆 
 

ներկայացումը, կստանանք` 
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∆2= E [(𝑌𝑛+1 − 𝑌̂)
2
] = E [(𝐳𝑇𝛃̂ − 𝐗𝑛+1

𝑇 𝛃 − ε𝑛+1)
2
] =

= E {[(𝐗𝑛+1
𝑇 + 𝐮𝑇)𝛃̂ − 𝐗𝑛+1

𝑇 𝛃 − 𝜀𝑛+1]
2
} = 

 

= E {[𝐗𝑛+1
𝑇 (𝛃̂ − 𝛃) + 𝐮𝑇𝛃̂ − 𝜀𝑛+1]

2
} = E {[𝐗𝑛+1

𝑇 (𝕏𝑇𝕏)−1𝕏𝑇𝛆 + 𝐮𝑇𝛃̂ − 𝜀𝑛+1]
2
} ∶ 

Այժմ, նկատի ունենալով 𝐮-ի և (𝜀𝟏, … , 𝜀𝑛, 𝜀𝑛+1)
𝑇-ի անկախությունը, 

այստեղից կունենանք` 

∆2= E[𝐗𝑛+1
𝑇 (𝕏𝑇𝕏)−1𝕏𝑇𝛆𝛆𝑇𝕏(𝕏𝑇𝕏)−1𝐗𝑛+1] + E [𝐮

𝑇𝛃̂(𝛃̂)
𝑇
𝐮 ]  +  E(𝜀𝑛+1

2 ) + 

 

+ E[𝐗𝑛+1
𝑇 (𝕏𝑇𝕏)−1𝕏𝑇𝛆 𝐮𝑇𝜷̂] = σ2𝐗𝑛+1

𝑇 (𝕏𝑇𝕏)−1𝐗𝑛+1 + E [𝐮
T𝛃̂(𝛃̂)

𝑇
𝐮] + σ2 + 

 

 

+ E[𝐗𝑛+1
𝑇 (𝕏𝑇𝕏)−1𝕏𝑇𝛆 𝐮𝑇𝛃̂]:                               (12.60) 

Գտնենք   E [𝐮T𝛃̂(𝛃̂)
𝑇
𝐮]  և  E[𝐗𝑛+1

𝑇 (𝕏𝑇𝕏)−1𝕏𝑇𝛆 𝐮𝑇𝛃̂] արժեքները: 

 E [𝐮T𝛃̂(𝛃̂)
𝑇
𝐮] = E{𝐮𝑇[𝛃 + (𝕏𝑇𝕏)−1𝕏𝑇𝛆][𝛃𝑇 + 𝛆𝑇𝕏(𝕏𝑇𝕏)−1]𝐮} = 

= E[𝐮𝑇𝛃𝛃𝑇𝐮] + σ2E[𝐮𝑇(𝕏𝑇𝕏)−1𝐮] = E[𝐮𝑇𝛃𝛃𝑇𝐮] + σ2 ∑ 𝑐𝑖𝑗

𝑘

𝑖,𝑗=1

E(𝑢𝑖𝑢𝑗) =

= 𝛃𝑇[E(𝐮𝐮𝑇)]𝛃 + σ2∑𝑐𝑖𝑖

𝑘

𝑖=1

E(𝑢𝑖
2) = 

= σ𝑢
2𝛃𝑇𝛃 + σ2σ𝑢

2  tr[(𝕏𝑇𝕏)−1]:                                                 (12.61) 

Այստեղ նշանակված է՝ (𝕏𝑇𝕏)−1 = ‖𝑐𝑖𝑗‖𝑖,𝑗=1
𝑘

: Այնուհետև ունենք` 

E [𝐗𝑛+1
𝑇 (𝕏𝑇𝕏)−1𝕏𝑇𝛆(𝛃̂)

𝑇
𝐮] = E[𝐗𝑛+1

𝑇 (𝕏𝑇𝕏)−1𝕏𝑇𝛆𝛆𝑇𝕏(𝕏𝑇𝕏)−1𝐮]  = 

 

= 𝐗n+1
𝑇 (𝕏𝑇𝕏)−1𝕏𝑇{E[𝛆𝛆𝑇𝕏(𝕏𝑇𝕏)−1𝐮]} = 0, 

 

քանի որ 𝛆 և 𝐮 վեկտորներն անկախ են: Այնպես որ, (12.60)-ից և (12.61)-

ից կստանանք (12.59)-ը:         
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Դիտողություն 12.13: Այսպիսով, համեմատելով (12.59) բանաձևը 

(12.50) բանաձևի հետ, կարելի է եզրակացնել, որ անկախ փոփոխակա-

նում պատահական սխալի առկայության դեպքում կանխատեսման 

միջին քառակուսային (12.59) սխալը մեծանում է 𝜎𝒖
2 արժեքին համեմա-

տական երկու գումարելիներով: 

 

       Խնդիրներ 

 

12.13. Տրված են 𝐘 = 𝕏𝛃+ 𝛆 նորմալ գծային ռեգրեսիոն մոդելը և 𝑌0, 

𝐗0 = ‖𝑋01 , … , 𝑋0𝑘‖
𝑇  լրացուցիչ դիտարկումներ: Ո՞ր վիճականու օգնու-

թյամբ կարելի է ստուգել՝ բավարարո՞ւմ են, թե՞ ոչ տրված մոդելին այդ 

դիտարկումները:  
 

Պատասխան`  
 

 𝕥 =
𝑌̂0 − 𝑌0
𝛿

 ,   𝑌̂0 = 𝐗0
𝑇𝛃,̂   𝛿 = 𝕤 √1 + 𝐗0

𝑇(𝕏𝑇𝕏)−1𝐗0 ,   𝕤
2 =

1

𝑛 − 𝑘
 (𝐘 − 𝕏𝛃̂)

𝑇
(𝐘 − 𝕏𝛃̂): 

 

12.14. Խնդիր 12.9-ի պայմաններում գտնել 𝑌0-ի կանխատեսված 𝑌̂0 

արժեքը, երբ 𝑋02 = − 4, 𝑋03 = 2 (𝑋01 = 1): Գտնել նաև կանխատեսման 

միջին քառակուսային սխալը և 95 % -ոց վստահության միջակայքը: 
 

 Պատասխան՝  𝑌̂0 = 8,  𝛿2 = 0.82,  𝑌0 ∈ (6.15, 9.85): 

 

       § 12.7.  Ստոխաստիկ ռեգրեսորներ 

 

Նախորդ դիտարկումներում ռեգրեսորները ենթադրվում էին ոչ 

պատահական: Սակայն հաճախ հանդիպում են այնպիսի դեպքեր, երբ 

ռեգրեսորները պատահական մեծություններ են: Օրինակ, երբ չափում-

ների արդյունքում անկախ փոփոխականների արժեքները ստացվում են 

պատահական սխալներով: 

 Եվ այսպես, դիցուք դիտվում է  
 

𝐘 = 𝕏𝛃 + 𝛆  
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գծային ստոխաստիկ ռեգրեսիոն մոդելը, որտեղ Y-ը` 𝑛 × 1–չափանի 

կախյալ փոփոխականների պատահական վեկտոր է, 𝕏-ը՝ 𝑛 × 𝑘-չափանի 

պատահական տարրերով մատրից, 𝛆-ը՝ 𝑛 × 1-չափանի պատահական 

սխալների վեկտոր: Ենթադրվում է, որ տեղի ունեն հետևյալ  

 (H) – պայմանները` 
 

H 1.  E(𝛆|𝕏) = 𝟎, 

H 2.  𝕍(𝛆|𝕏) = E(𝛆𝛆𝑇|𝕏) = σ2𝔼𝑛, 

H 3.  P(rank (𝕏) = 𝑘) = 1 
 

(այստեղ E(𝛆|𝕏)-ը, ըստ 𝕏 մատրիցի պայմանական մաթեմատիկական 

սպասումն է, իսկ 𝕍(𝛆|𝕏)-ը՝ պայմանական կովարիացիոն մատրիցը (տե՛ս 

Հ. 31, Հ. 32)): 

       Նկատենք, որ H 1. և H 2. պայմանները համարժեք են 
 

H 𝟏′.  E(𝐘|𝕏) = 𝕏𝛃, 

        H 𝟐′.  𝕍(𝐘|𝕏) = 𝜎2𝔼𝑛 պայմաններին:  

Դիտողություն 12.14: H 1. և H 2. պայմանները վերաբերում են 𝕏 

պատահական ռեգրեսիոն մատրիցի և 𝛆 սխալների վեկտորի համատեղ 

բաշխմանը: H 1. պայմանից, օրինակ, հետևում է, որ 𝕏 մատրիցի և 𝛆 վեկ-

տորի տարրերը չկորելյացված են: Իրոք, E(𝛆|𝕏) = 𝟎 պայմանից հետևում 

է, որ E(𝛆) = E(E(𝛆|𝕏)) = 𝟎, որտեղից՝ 
 

cov (𝑋𝑖𝑗 ,  𝜀𝑚) = E(𝑋𝑖𝑗𝜀𝑚) = E (𝑋𝑖𝑗E(𝜀𝑚|𝕏)) = 0,   

 𝑖, 𝑚 = 1,… , 𝑛,   𝑗 = 1,… , 𝑘: 
 

Հակառակ պնդումը ճիշտ չէ: Սակայն, եթե 𝕏-ը և 𝛆-ը անկախ են, և 

E(𝛆) = 𝟎, E(𝛆𝛆𝑇) = σ2𝔼𝑛, ապա H 1. և H 2. պայմանները բավարարվում են:  

Այժմ դիցուք  

 𝛃̂𝑂𝐿𝑆 ∶= 𝛃̂ = (𝕏
𝑇𝕏)−1𝕏𝑇𝐘 = 𝛃 + (𝕏𝑇𝕏)−1𝕏𝑇𝛆 

𝛃 պարամետրի (սովորական) նվազագույն քառակուսիների գնահա-

տականն է, որը գոյություն ունի 𝕏 պատահական մատրիցի կամայական 

իրագործման դեպքում (H 3. պայման), իսկ 
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σ̂2 =
1

𝑛 − 𝑘
 𝐞𝑇𝐞 `  

 

σ2 ցրվածքի գնահատականը, որտեղ  

𝐞 = 𝐘 − 𝕏𝛃̂ = 𝕄𝐘 = (𝔼𝑛 −𝕏(𝕏
𝑇𝕏)−1𝕏𝑇)𝐘 

մնացորդների վեկտորն է:  

Դիտարկենք 𝛃̂ վեկտորի կովարիացիոն մատրիցը՝ 
 

 

𝕍(𝛃̂) = E [(𝛃̂ − 𝛃)(𝛃̂ − 𝛃)
𝑇
] = E[(𝕏𝑇𝕏)−1𝕏𝑇𝛆𝛆𝑇𝕏(𝕏𝑇𝕏)−1] = 

 

 

= E[E((𝕏𝑇𝕏)−1𝕏𝑇𝛆𝛆𝑇𝕏(𝕏𝑇𝕏)−1|𝕏)] = E{(𝕏𝑇𝕏)−1𝕏𝑇[E(𝛆𝛆𝑇|𝕏)]𝕏(𝕏𝑇𝕏)−1} = 
 

 

 

 = σ2E[(𝕏𝑇𝕏)−1] 

և նշանակենք՝  
 

 𝕍̂(𝛃̂) = σ̂2E[(𝕏𝑇𝕏)−1]-ով  

դրա գնահատականը: 

 

       Լեմմա 12.5: Դիցուք բավարարվում են H 1. − H 3. պայմանները: Այդ 

դեպքում  𝛃̂, σ̂2 և  𝕍̂(𝛃̂) գնահատականները պայմանական (ըստ 𝕏 -ի) 

անշեղ են, այսինքն՝ 

E(𝛃̂|𝕏) = 𝛃, E(σ̂2|𝕏) = σ2, E(𝕍̂(𝛃̂)|𝕏) = 𝕍(𝛃̂) = σ2E[(𝕏𝑇𝕏)−1]: 

Բացի այդ, ռեգրեսիայի մնացորդների  𝐞 վեկտորը բավարարում է 

E(𝐞|𝕏) = 𝟎,   𝕍(𝐞|𝕏) = 𝕍(𝐞) = σ2𝕄,   E(𝐞𝑇𝐞|𝕏) = E(𝐞𝑇𝐞) = σ2tr (𝕄) 

պայմանները:  

Ա պ ա ց ու ց ու մ: Պարզ ձևափոխություններ կատարելով՝ 

կստանանք` 
 

E(𝛃̂|𝕏) = 𝛃 + E((𝕏𝑇𝕏)−1𝕏𝑇𝛆|𝕏) = 𝛃 + (𝕏𝑇𝕏)−1𝕏𝑇E(𝛆|𝕏) = 𝛃, 
 

 

𝕍(𝛃̂|𝕏) = 𝕍((𝕏𝑇𝕏)−1𝕏𝑇𝐘|𝕏) = (𝕏𝑇𝕏)−1𝕏𝑇𝕍(𝐘|𝕏)𝕏(𝕏𝑇𝕏)−1 = σ2(𝕏𝑇𝕏)−1: 
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Մյուս կողմից՝ 

E(𝕍̂(𝛃̂)|𝕏) = E(σ̂2E[(𝕏𝑇𝕏)−1]|𝕏) = E(σ̂2|𝕏)E[(𝕏𝑇𝕏)−1]:          (12.62) 

𝐸(σ̂2|𝕏) պայմանական մաթ. սպասումը գտնելու համար նախօրոք 

գտնենք` 

E(𝐞|𝕏) = E(𝕄𝐘|𝕏) = 𝕄E(𝐘|𝕏) = 𝕄𝕏𝛃 = 𝟎, 
 

 

𝕍(𝐞|𝕏) = 𝕍(𝕄𝐘|𝕏) = 𝕄𝕍(𝐘|𝕏)𝕄𝑇 = σ2𝕄: 
 

Այստեղից կստանանք` 
 

E(𝐞𝑇𝐞|𝕏) = tr[𝕍(𝐞|𝕏)]  = 𝜎2tr (𝕄): 
 

Այսպիսով (տե՛ս թեորեմ 12.3 -ը), ունենք`  

E(σ̂2|𝕏) =
1

𝑛 − 𝑘
 E(𝐞𝑇𝐞|𝕏) =

σ2

𝑛 − 𝑘
 tr (𝕄) = σ2: 

 

Վերջնականորեն (12.62)-ից կստանանք` 
 

E(𝕍̂(𝜷̂)|𝕏) = σ2E[(𝕏𝑇𝕏)−1]:                 

 

        Հետևանք 12.3: H 1. − H 3. պայմանները բավարարվելու դեպքում  𝛃 ̂,  

σ̂2 և 𝕍̂(𝛃̂) գնահատականներն անշեղ են համապատասխան պարա-

մետրերի համար նաև ոչ պայմանական իմաստով: 

Ա պ ա ց ու ց ում: Համաձայն պայմանական մաթ.սպասման հատկու-

թյունների՝ ունենք՝  

E(𝛃̂) = E[E(𝛃̂|𝕏)] = E(𝛃) = 𝛃, 

 

E(σ̂2) = E[E(σ̂2|𝕏)] = E(σ2) = σ2, 
 

 
 

E[𝕍̂(𝛃̂)] = E[E(𝕍̂(𝛃̂)|𝕏)] = E[𝕍(𝛃̂)] = 𝕍(𝜷̂):      ∎   

 

Ստոխաստիկ ռեգրեսիոն մոդելի համար ճիշտ է Գաուս – Մարկովի 

թեորեմի տարբերակը: 
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       Թեորեմ 12.16 (Գաուս – Մարկով ): Դիցուք ստոխաստիկ ռեգրեսիոն 

մոդելը բավարարում է H 1. − H 3. պայմանները: Այդ դեպքում 𝛃 պարա-

մետրի նվազագույն քառակուսիների 𝛃̂ = (𝕏𝑇𝕏)−1𝕏𝑇𝐘 գնահատականը 𝛃 

պարամետրի բոլոր գծային (ըստ Y-ի ) պայմանական անշեղ գնահատա-

կանների  
 

ℒ𝛃
0(𝐘) = 

{ 𝛃∗ ∶  𝛃∗ = 𝔸𝐘 (𝔸 ­ն կամայական 𝑘 × 𝑛 ­չափանի մատրից է) , E(𝛃∗|𝕏) = 𝛃} 
 

դասում ունի «նվազագույն» պայմանական 𝕍(𝛃̂|𝕏) կովարիացիոն մատ-

րիցը (այսինքն՝ 𝕍(𝛃∗|𝕏) − 𝕍(𝛃̂|𝕏) ≥ 𝟎 ոչ բացասական որոշյալ մատրից է): 

Թեորեմն ապացուցվում է ինչպես թեորեմ 12.2-ը, միայն այն տարբե-

րությամբ, որ բոլոր ոչ պայմանական մաթ. սպասումները և կովարիա-

ցիոն մատրիցները պետք է փոխարինել պայմանականներով (տե՛ս 

Greene [20]): 

 

Նվազագույն քառակուսիների գնահատականի ունակությունը (տե՛ս 

Greene [20]): 

        Թեորեմ 12.17: Դիցուք ստոխաստիկ ռեգրեսիոն մոդելը բավարարում 

է H1. − H3. պայմանները, և, բացի այդ, ճիշտ են նաև հետևյալ պայման-

ները՝ 

 C 1.  գոյություն ունի  
 

1

𝑛
 𝕏𝑇𝕏 

P
→  𝔸,   𝑛 → ∞ 

 

սահմանը, որտեղ 𝔸-ն 𝑘 × 𝑘-չափանի դրական որոշյալ մատրից է, 
 

 C 2.  գոյություն ունի նաև հետևյալ սահմանը` 
 

1

𝑛
 𝕏𝑇𝛆 

P
→  𝟎 ∈ ℛ𝑘,   𝑛 → ∞: 

 

 Այդ դեպքում 𝛃 պարամետրի նվազագույն քառակուսիների 𝛃̂ գնահա-

տականն ունակ է: 
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Ա պ ա ց ու ց ու մ: Ներկայացնենք 𝛃̂ գնահատականը հետևյալ ձևով՝ 
 

𝛃̂ = 𝛃 + (
1

𝑛
 𝕏𝑇𝕏)

−1

(
1

𝑛
 𝕏𝑇𝛆): 

 

 

Այժմ ապացույցը բխում է անընդհատության թեորեմներից (տե՛ս [15]):   

Դիտողություն 12.15: Որոշ դեպքերում C 1. և C 2. պայմանները 

հեշտությամբ ստուգվում են: Օրինակ, դիցուք 𝕏 մատրիցի տողերն ան-

կախ են և ունեն միևնույն բաշխում, ռեգրեսիայի 𝜀𝑖 սխալներն անկախ են 

և միատեսակ բաշխված, ընդ որում՝ E(𝜀𝑖) = 0, և, բացի այդ, 𝕏-ը և 𝛆-ը 

անկախ են: Նշանակենք՝  

𝑎𝑖𝑗 = E(𝑋𝑚𝑖𝑋𝑚𝑗),     𝑖, 𝑗 = 1,… , 𝑘,     𝔸 = ‖𝑎𝑖𝑗‖𝑖,𝑗=1
𝑘

: 

Այդ դեպքում, կիրառելով մեծ թվերի օրենքը, կստանանք` 

1

𝑛
 𝕏𝑇𝕏 

P
→  𝔸,   𝑛 → ∞, 

որտեղ 𝔸 մատրիցը դրական որոշյալ է: Նմանապես, ունենք` 

1

𝑛
 𝕏𝑇𝛆 

P
→  𝟎,      𝑛 → ∞ , 

քանի որ 

1

𝑛
 ∑𝑋𝑖𝑗𝜀𝑖  

P
→

𝑛

𝑖=1

E(𝑋1𝑗𝜀1) = E(𝑋1𝑗)E(𝜀1) = 0,     𝑗 = 1,… , 𝑘: 

Դիտողություն 12.16: 𝛃̂ գնահատականի ունակության համար իրա-

կանում բավական է պահանջել, որ բավարարվի միայն C 1. պայմանը: 

Իրոք, օգտվելով լեմմա 12.5-ից, ունենք`  

𝕍(𝛃̂) = σ2E[(𝕏𝑇𝕏)−1] =
1

𝑛
 σ2E [(

1

𝑛
 𝕏𝑇𝕏)

−1

] 
 
→  𝟎,   երբ  𝑛 → ∞: 

Մյուս կողմից, քանի որ E(𝛃̂) = 𝛃, ապա, օգտվելով ունակության հայտա-

նիշից (տե՛ս [15]), կստանանք` 

𝛃̂𝑛
P
→  𝛃,   𝑛 → ∞:  
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Խնդիր 

 

12.15. Ապացուցել Գաուս – Մարկովի թեորեմ 12.16-ը: 
 

Ցուցում՝ տե՛ս թեորեմ 12.2-ի ապացուցումը: 

 

       § 12.8.  Ընդհանրացված նվազագույն քառակուսիների եղանակ 

Դասական ռեգրեսիոն տեսությունում ենթադրվում էր, որ պատահա-

կան սխալները չկորելյացված են և ունեն միևնույն հաստատուն ցրվածք: 

Այդ ենթադրությունը, սակայն, դառնում է անիմաստ, երբ գործնականում 

պարզվում է, որ դիտվող մեծությունները բավականաչափ անհամասեռ 

են: Դա նշանակում է, որ դիտվող մեծությունների, հետևաբար և ռեգրե-

սիայի պատահական սխալների ցրվածքները հաստատուն չեն: Այդ 

երևույթը կոչվում է հետերոսկեդաստիկություն (անհամասեռություն)՝ ի 

տարբերություն հոմոսկեդաստիկության (համասեռության՝ տարբեր դի-

տումների դեպքում ցրվածքների անփոփոխության): 

       Այսպիսով, իմաստ ունի ուսումնասիրել ռեգրեսիոն մոդելները, որոնց 

համար 𝕍(𝛆) = σ2𝔼𝑛 պայմանը տեղի չունի:  
 

Դիտարկվում է այսպես կոչված ընդհանրացված ռեգրեսիոն մոդելը՝ 

𝐘 = 𝕏𝛃 + 𝛆,                                                    (12.63) 

որտեղ 𝐘-ը` 𝑛 × 1-չափանի կախլալ փոփոխականների վեկտոր է, 𝕏-ը՝ 

𝑛 × 𝑘-չափանի անկախ փոփոխականների մատրից, 𝛃-ն՝ 𝑘 × 1-չափանի 

անհայտ պարամետրերի վեկտոր, 𝛆-ը՝ 𝑛 × 1-չափանի պատահական 

սխալների վեկտոր:  

Դիցուք այնուհետև բավարարվում են հետևյալ պայմանները՝ 
 

𝐇∗𝟏.   𝕏-ը ոչ պատահական մատրից է, և rank (𝕏) = 𝑘, 

𝐇∗𝟐.   E(𝛆) = 𝟎, 

𝐇∗𝟑.   𝕍(𝛆) = σ2𝛀, որտեղ 𝛀-ն 𝑛 × 𝑛-չափանի դրական որոշյալ 

մատրից է: 
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Այժմ քննարկենք (12.63) մոդելի համար սովորական և ընդհանրաց-

ված նվազագույն քառակուսիների եղանակները (տե՛ս [10]):  
 

1. Սովորական նվազագույն քառակուսիների եղանակ 

 

 Դիցուք 

𝛃̂𝑂𝐿𝑆 ∶= 𝛃̂ = (𝕏
𝑇𝕏)−1𝕏𝑇𝐘-ը 

 

𝛃 պարամետրի սովորական նվազագույն քառակուսիների գնահատա-

կանն է, 
 

𝐞 = 𝐘 − 𝕏𝛃̂ = 𝕄𝐘 = (𝔼𝑛 − 𝕏(𝕏
𝑇𝕏)−1𝕏𝑇)𝐘-ը՝  

 

մնացորդների վեկտորը: 

 

       Թեորեմ 12.18: Դիցուք (12.63) մոդելը բավարարում է 𝐇∗𝟏. − 𝐇∗𝟑. Պայ-

մանները: Այդ դեպքում ճիշտ են հետևյալ ներկայացումները՝ 
 

E(𝛃̂) = 𝛃,   𝕍(𝛃̂) = σ2(𝕏𝑇𝕏)−1𝕏𝑇𝛀 𝕏(𝕏𝑇𝕏)−1, 
 

E(𝐞) = 𝟎,   𝕍(𝐞) = σ2𝕄𝛀𝕄,   E(𝐞𝑇𝐞) = σ2tr (𝕄𝛀):  

Ա պ ա ց ու ց ու մ:  Պարզ է, որ  

E(𝛃̂) = 𝛃 + (𝕏𝑇𝕏)−1𝕏𝑇E(𝛆) = 𝛃: 

Մյուս կողմից (տե՛ս Հ. 30) ունենք`  

𝕍(𝛃̂) = (𝕏𝑇𝕏)−1𝕏𝑇𝕍(𝐘)𝕏(𝕏𝑇𝕏)−1 = σ2(𝕏𝑇𝕏)−1𝕏𝑇𝛀 𝕏(𝕏𝑇𝕏)−1 ∶ 

Մնացորդների վեկտորի համար (տե՛ս Հ. 2) կստանանք`  

E(𝐞) = 𝕄E(𝐘) = 𝟎, 𝕍(𝐞) = 𝕄 𝕍(𝐘)𝕄𝑇 = σ2𝕄𝛀𝕄, 
 

E(𝐞𝑇𝐞) = tr [𝕍(𝐞)]  = σ2tr (𝕄𝛀𝕄) = σ2tr (𝕄2𝛀) = σ2tr (𝕄𝛀):        
 

Դիտողություն 12.17: Եթե որպես 𝕍(𝛃̂) կովարիացիոն մատրիցի գնա-

հատական դիտարկենք 𝕍̂(𝛃̂) = σ2̂ (𝕏𝑇𝕏)−1 վիճականին, որտեղ  

σ2̂ =
1

𝑛 − 𝑘
 𝐞𝑇𝐞, 
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ապա 

E[𝕍̂(𝛃̂)] =
1

𝑛 − 𝑘
 [E(𝐞𝑇𝐞)](𝕏𝑇𝕏)−1 =

σ2

𝑛 − 𝑘
 tr (𝕄𝛀)(𝕏𝑇𝕏)−1 ≠ 𝕍(𝛃̂), 

 

այնպես որ, 𝕍(𝛃̂) կովարիացիոն մատրիցի 𝕍̂(𝛃̂) գնահատականն անշեղ չէ: 
 

Պատահական  𝕏 մատրիցի դեպք 

Այժմ դիտարկենք այն դեպքը, երբ (12.63) մոդելում 𝕏 մատրիցը պա-

տահական է, և մոդելը բավարարում է հետևյալ պայմանները՝ 
 

 𝑯∗𝟏′.  P(rank (𝕏 ) = 𝑘) = 1, 

 𝑯∗𝟐′.  E(𝛆|𝕏) = 𝟎, 

 𝑯∗𝟑′.  𝕍(𝛆|𝕏) = σ2𝛀, որտեղ 𝛀-ն 𝑛 × 𝑛-չափանի դրական որոշյալ 

մատրից է: 
 

Ճիշտ է ունակության վերաբերյալ թեորեմ 12.17-ի հետևյալ տարբե-

րակը․  

 Թեորեմ 12.19: Եթե, բացի 𝐇∗𝟏′. − 𝐇∗𝟑′. պայմաններից, տեղի ունեն 

նաև հետևյալ պայմանները՝ 
 

           𝐂∗𝟏′ .   
1

𝑛
 𝕏𝑇𝕏 

P
→  𝔸,     𝑛 → ∞ , 

 

           𝐂∗𝟐′ .   
1

𝑛
 𝕏𝑇𝛀 𝕏 

P
→  𝔹,     𝑛 → ∞,  

 

որտեղ 𝔸-ն և 𝔹-ն որոշակի դրական որոշյալ մատրիցներ են, ապա 𝛃 

պարամետրի նվազագույն քառակուսիների 𝛃̂ գնահատականն ունակ է: 

Ա պ ա ց ու ց ու մ: 𝛃̂-ի կովարիացիոն մատրիցը ներկայացնենք 

հետևյալ ձևով՝ 

𝕍(𝛃̂) = E [(𝜷̂ − 𝜷)(𝜷̂ − 𝜷)
𝑇
] = E{E[(𝕏𝑇𝕏)−1𝕏𝑇𝛆𝛆𝑇𝕏(𝕏𝑇𝕏)−1|𝕏]} = 

 

= E[(𝕏𝑇𝕏)−1𝕏𝑇E(𝛆𝛆𝑇|𝕏)𝕏(𝕏𝑇𝕏)−1] = σ2E[(𝕏𝑇𝕏)−1𝕏𝑇𝛀 𝕏(𝕏𝑇𝕏)−1]  = 
 

 

=
𝜎2

𝑛
 E [(

1

𝑛
 𝕏𝑇𝕏)

−1

(
1

𝑛
 𝕏𝑇𝛀 𝕏 )

 

(
1

𝑛
 𝕏𝑇𝕏)

−1

]:  
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Համաձայն  𝐂∗𝟏′.  և  𝐂∗𝟐′.  պայմանների՝ այստեղից կստանանք`  

𝕍(𝛃̂)
 
→  𝟎, 𝑛 → ∞∶ 

Մյուս կողմից, քանի որ E(𝛃̂) = 𝛃, ապա, կիրառելով ունակության 

հայտանիշը (տե՛ս [15]), եզրակացնում ենք, որ  𝛃̂𝑛
P
→  𝛃, 𝑛 → ∞:  

Դիտողություն 12.18: Ի տարբերություն դասական ռեգրեսիոն մո-

դելների՝ այդ գնահատականը չի լինի օպտիմալ Գաուս – Մարկովի թեո-

րեմի իմաստով: Օպտիմալ գնահատականը ստանալու համար անհրա-

ժեշտ է կիրառել ընդհանրացված նվազագույն քառակուսիների եղանակը:  

 

2. Ընդհանրացված նվազագույն քառակուսիների եղանակ  
 

 

        Թեորեմ 12.20 (Այթքեն): Դիցուք տրված է (12.63) ընդհանրացված 

ռեգրեսիոն մոդելը, որը բավարարում է 𝐇∗𝟏.− 𝐇∗𝟑. պայմանները: Այդ 

դեպքում 𝛃 պարամետրի բոլոր գծային (ըստ 𝐘-ի) անշեղ գնահա-

տականների դասում 
 

𝛃̂∗ = (𝕏𝑇𝛀−1𝕏)−1𝕏𝑇𝛀−1𝐘                                      (12.64)  
 

 

գնահատականը օպտիմալ է (այսինքն՝ դրա կովարիացիոն մատրիցը այդ 

դասում «փոքրագույնն» է) : 

Ա պա ց ու ց ու մ:  Ներկայացնենք  𝛃̂∗ գնահատականը  

𝛃̂∗ = (𝕏𝑇𝛀−1𝕏)−1𝕏𝑇𝛀−1(𝕏𝛃 + 𝛆) = 𝛃 + (𝕏𝑇𝛀−1𝕏)−1𝕏𝑇𝛀−1𝛆 

տեսքով, որտեղից կստանանք` 

E(𝛃̂∗) = 𝛃 + (𝕏𝑇𝛀−1𝕏)−1𝕏𝑇𝛀−1E(𝛆) = 𝛃, 

այսինքն՝ 𝛃̂∗-ը անշեղ գնահատական է 𝛃 պարամետրի համար: Նկատենք, 

որ 𝛀−1 մատրիցը համաչափ է և դրական որոշյալ: Իրոք՝ 

(𝛀−1)𝑇 = (𝛀𝑇)−1 = 𝛀−1 

և կամայական 𝒕 ∈ ℛ𝑛 -ից վեկտորի համար՝ 
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𝐭𝑇𝛀−1𝐭 = 𝐭𝑇(𝛀−1)𝑇𝛀 𝛀−1𝐭 = 𝐬𝑇𝛀 𝐬 > 0  (𝛀−1𝐭 ∶= 𝐬), 

քանի որ, ըստ 𝐇∗𝟑 պայմանի, 𝛀 մատրիցը համաչափ է և դրական որո-

շյալ: 

Այժմ ցույց տանք (տե՛ս Հ. 12, հատկություն 3-ը), որ գոյություն ունի 

այնպիսի  𝑛 × 𝑛 – չափանի չվերասերված ℙ մատրից, որ 

ℙ𝑇ℙ = 𝛀−1:                                                  (12.65) 

      Քանի որ 𝛀−1-ը համաչափ մատրից է, ապա (տե՛ս Հ. 9) գոյություն ունի 

այնպիսի օրթոգոնալ 𝕊 մատրից, որ 𝛀−1 = 𝕊𝑇𝚲 𝕊, որտեղ 𝚲-ն անկյունա-

գծային մատրից է, որի գլխավոր անկյունագծի վրա գտնվում են 𝛀−1 

մատրիցի 𝜆𝑖, 𝑖 = 1,… , 𝑛 սեփական արժեքները: 𝛀−1 մատրիցի դրական 

որոշյալ լինելու պայմանից հետևում է, որ 𝜆𝑖 > 0, այնպես որ կարելի է 

սահմանել  

𝚲1 2⁄ = diag (𝜆1
1 2⁄ , … , 𝜆𝑛

1 2⁄  ) 

մատրիցը: Այժմ, վերցնելով ℙ = 𝚲1 2⁄ 𝕊, կստանանք (12.65) ներկայացումը 

(նկատենք այստեղ, որ այդ ներկայացումը միակը չէ): Այնուհետև, 

կիրառելով  

𝐘 = 𝕏𝛃 + 𝛆 

հավասարության երկու մասերի վրա ձախ կողմից ℙ մատրիցը, 

կստանանք` 

ℙ𝐘 = ℙ𝕏𝛃+ ℙ𝛆 ∶                                            (12.66) 

Կատարելով 𝐘∗ = ℙ𝐘,   𝕏∗ =ℙ𝕏,   𝛆∗ = ℙ𝛆 նշանակումները՝ (12.66)-ը 

կբերվի  

𝐘∗ = 𝕏∗𝛃 + 𝛆∗                                            (12.67) 

տեսքի: (12.65)-ից հետևում է, որ  𝛀−1ℙ−1 = ℙ𝑇, ուստի 
 

 

E(𝛆∗) = 𝟎,   𝕍(𝛆∗) =  𝕍(ℙ𝛆) = ℙ𝕍(𝛆)ℙ𝑇 = σ2ℙ𝛀( 𝛀−1ℙ−1) = σ2𝔼𝑛: 
 

 

Բացի այդ, քանի որ  ℙ  մատրիցը  չվերասերված է, ապա rank (𝕏∗) =

= rank(𝕏) = 𝑘:  
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Այսպիսով, (12.67) ռեգրեսիոն մոդելը բավարարում է Գաուս –

Մարկովի  թեորեմ 12.2-ում բերված H 1. և H 2. պայմանները: Հետևաբար՝  
 

 

𝜷̂∗ = [(𝕏∗)𝑇𝕏∗]−1(𝕏∗)𝑇𝐘∗ = (𝕏𝑇ℙ𝑇ℙ𝕏)−1𝕏𝑇ℙ𝑇ℙ𝐘 = (𝕏𝑇𝛀−1𝕏)−1𝕏𝑇𝛀−1𝐘 
 

 

գնահատականը 𝛃 պարամետրի անշեղ և գծային ըստ 𝐘∗-ի գնահատա-

կանների դասում օպտիմալ է: Այժմ նկատենք, որ ℙ մատրիցի չվերասեր-

վածությունից հետևում է, որ 𝐘∗-ների նկատմամբ գծային գնահատա-

կանների դասը համընկնում է ըստ Y-ների գծային գնահատականների 

դասի հետ: Այսպիսով, թեորեմն ապացուցվեց:        

Դիտողություն 12.20: 1. Քանի որ 𝕍(𝐘) = σ2𝛀, ապա 𝛃̂∗ գնահատա-

կանի (12.64) ներկայացումից կստանանք, որ դրա կովարիացիոն 

մատրիցը կլինի հավասար  

𝕍(𝛃̂∗) = (𝕏𝑇𝛀−1𝕏)−1𝕏𝑇𝛀−1𝕍(𝐘)𝛀−1𝕏(𝕏𝑇𝛀−1𝕏)−1𝛃̂∗ = σ2(𝕏𝑇𝛀−1𝕏)−1 

(12.68) 

𝛃̂∗ գնահատականը հաճախ նշանակվում է 𝛃̂𝐺𝐿𝑆(Generalized Least Squares): 

Պարզ է, որ եթե ռեգրեսիոն մոդելը դասական է, այսինքն` 𝛀 = 𝔼𝑛, ապա 

𝛃̂𝐺𝐿𝑆 = 𝛃̂𝑂𝐿𝑆 = 𝛃̂: 

2. «Ընդհանրացված նվազագույն քառակուսիների եղանակ» անվա-

նումն ունի հետևյալ բացատրությունը․  

Այթքենի թեորեմն ապացուցելիս 𝛃̂𝐺𝐿𝑆 գնահատականը ստացվում է 

(12.67) մոդելում 𝜑(𝛃)  =  (𝛆∗)𝑇𝛆∗ սխալների քառակուսիների գումարը 

մինինալացնելով ըստ 𝛃-ի:  Ներկայացնենք 𝜑(𝛃) -ն հետևյալ տեսքով՝ 
 

𝜑(𝛃) = (𝛆∗)𝑇𝛆∗ = (𝐘∗ − 𝕏∗𝛃)𝑇(𝐘∗ − 𝕏∗𝛃) = (𝐘 − 𝕏𝛃)𝑇ℙ𝑇ℙ(𝐘− 𝕏𝛃) = 
 

= (𝐘 − 𝕏𝛃)𝑇𝛀−1(𝐘 − 𝕏𝛃) = 𝛆𝑻𝛀−1𝛆 ∶ 
 

Այսպիսով, (12.63) մոդելի 𝛃 պարամետրի օպտիմալ գնահատականը 

գտնելու համար պետք է մինիմալացվի 𝛆𝑻𝛀−1𝛆 «ընդհանրացված» սխալ-

ների քառակուսիների գումարը՝ 
 

min
𝛃
(𝛆𝑇𝛀−1𝛆) = min

β
{(𝐘 − 𝕏𝛃)𝑇𝛀−1(𝐘 − 𝕏𝛃)} = 

= (𝐘 − 𝕏𝛃̂𝐺𝐿𝑆)
𝑇
𝛀−1(𝐘 − 𝕏𝛃̂𝐺𝐿𝑆) = (𝐞

∗)𝑇𝐞∗: 
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Այժմ դիտարկենք (12.63) ընդհանրացված նորմալ ռեգրեսիոն մոդելի 

համար  

ℍ0 ∶  ℝ𝛃 = 𝐫 
 

գծային սահմանափակումների առկայության վերաբերյալ վարկածը 

(տե՛ս § 12.5-ի կետ 3-ը): Դիցուք 𝛆 ~ ℕ(𝟎, σ2𝛀), որտեղ 𝛀 -ն հայտնի 

դրական որոշյալ մատրից է: 

Ճիշտ է թեորեմ 12.9-ի հետևյալ տարբերակը՝ 

       Թեորեմ 12.21:  ℍ0 վարկածը բավարարվելու դեպքում 
 

𝐹 =
(ℝ𝛃̂∗ − 𝐫)

𝑇
[ℝ(𝕏𝑇𝛀−1𝕏)−1ℝ𝑇] −1(ℝ𝛃̂∗ − 𝐫) 𝑞⁄

(𝐞∗)𝑇𝐞∗ (𝑛 − 𝑘)⁄
 ~ 𝕊(𝑞, 𝑛 − 𝑘) 

 

վիճականին   ունի  𝑞  և   (𝑛 − 𝑘)  ազատության  աստիճաններով  Ֆիշեր - 

- Սնեդեկորի (𝑭 −) բաշխում, որտեղ 𝐞∗ = 𝐘∗ − 𝕏∗𝛃̂∗-ը (12.67) ռեգրեսիայի 

մնացորդն է:  

Թեորեմն ապացուցվում է, ինչպես թեորեմ 12.9-ը, քանի որ (12.67) 

մոդելը բավարարում է սովորական ռեգրեսիոն մոդելի պայմանները 

(պետք է նկատի ունենալ նաև (12.68) ներկայացումը): Այնուհետև ℍ0 

վարկածը ստուգվում է սովորական ձևով: 

ℍ0 վարկածը կարելի է ստուգել նաև մի այլ եղանակով, եթե կիրա-

ռենք թեորեմ12.10-ին համարժեք հետևյալ թեորեմը՝ 

        Թեորեմ 12.22:  ℍ0 վարկածը բավարարվելու դեպքում 
 

𝐹 =
[(𝐞𝑅

∗ )𝑇𝐞𝑅
∗ − (𝐞∗)𝑇𝐞∗] 𝑞⁄

(𝐞∗)𝑇𝐞∗ (𝑛 − 𝑘)⁄
 ~ 𝕊(𝑞, 𝑛 − 𝑘)  

 

վիճականին ունի 𝑞 և (𝑛 − 𝑘) ազատության աստիճաններով Ֆիշեր – Սնե-

դեկորի (𝑭 −) բաշխում, որտեղ 𝐞𝑅
∗  = 𝐘∗ − 𝕏∗𝛃̂𝑅

∗ -ը ℝ𝛃 = 𝐫 սահմանափա-

կումների դեպքում (12.67) ռեգրեսիայի մնացորդն է, 𝛃̂𝑅
∗ -ը՝ համապա-

տասխան նվազագույն քառակուսիների գնահատականը, իսկ 𝐞∗ = 𝐘∗ −

− 𝕏∗𝛃̂∗-ը ռեգրեսիայի մնացորդն է առանց սահմանափակումների մոդելի 

համար: 
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Դիտողություն 12.21: Կարելի է ցույց տալ, որ ℝ𝛃 = 𝐫 սահմանափա-

կումներով (12.67) ռեգրեսիայի 𝛃̂𝑅
∗  նվազագույն քառակուսիների գնա-

հատականն ունի հետևյալ ներկայացումը (տե՛ս (12.73)-ը)՝ 

𝛃̂𝑅
∗ = 𝛃̂∗ + (𝕏𝑇𝛀−1𝕏)−1ℝ𝑇[ℝ(𝕏𝑇𝛀−1𝕏)−1ℝ𝑇]−1(𝐫 − ℝ𝛃̂∗): 

Նշենք այստեղ նաև այն փաստը, որ, ի տարբերություն դասական 

ռեգրեսիայի դեպքի, ընդհանրացված ռեգրեսիոն մոդելի համար 

𝑅2 = 1 −
(𝐘 − 𝕏𝛃̂∗)

𝑇
(𝐘 − 𝕏𝛃̂∗)

∑(𝑌𝑖 − 𝐘)
2

 

դետերմինացիայի գործակիցը չի կարող ծառայել որպես բավարար 

չափանիշ մոդելն ընտրելու համար: Ընդհանուր դեպքում այն նույնիսկ 

կարող է ընկած չլինել [0, 1] միջակայքում: 

 

       Խնդիրներ 

  

12.16.  Ապացուցել, որ  𝕍(𝛃̂𝑂𝐿𝑆,  𝛃̂𝐺𝐿𝑆) = 𝕍(𝛃̂𝐺𝐿𝑆): 
 

12.17. Ապացուցել, որ եթե 𝐘 = 𝕏𝛃+ 𝛆 ընդհանրացված ռեգրեսիոն 

մոդելը նորմալ է, այսինքն՝ 𝛆 ~ ℕ(𝟎,  σ2𝛀) (𝛀 կովարիացիոն մատրիցը 

հայտնի է), ապա  𝛃̂𝑂𝐿𝑆 = 𝛃̂𝑀𝐿: 
 

12.18. Դիցուք տրված է 𝐘 = 𝕏𝛃 + 𝛆 ընդհանրացված գծային ռեգրե-

սիոն մոդելը, որտեղ E(𝛆) = 𝟎, 𝕍(𝛆) = 𝛀: Ենթադրենք՝ 𝛃̂-ը 𝛃 վեկտորի 

սովորական նվազագույն քառակուսիների գնահատականն է, և 𝐘 = 𝕏𝛃̂:  

Գտնել՝  ա)  𝕍(𝐘̂)  և  𝕍(𝐞) = 𝕍(𝐘 − 𝐘),  բ)  𝕍(𝐞, 𝐘): 

 

       § 12.9.  Հասանելի ընդհանրացված նվազագույն  

       քառակուսիների եղանակ 

 

Դիցուք դիտարկվում է 

𝐘 = 𝕏𝛃 + 𝛆 

նորմալ գծային ռեգրեսիոն մոդելը, որտեղ  𝛆 ~ ℕ𝑛(𝟎, σ
2𝛀):
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       Այն դեպքում, երբ 𝑛 × 𝑛-չափանի կովարիացիոն 𝛀 մատրիցը հայտնի 

է, 𝑘 -չափանի 𝛃 պարամետրի համար լավագույն (օպտիմալ) գծային (ըստ 

𝐘 -ի) անշեղ գնահատականը տրվում է 

𝛃̂ = (𝕏𝑇𝛀−1𝕏)−1𝕏𝑇𝛀−1𝐘 

բանաձևի միջոցով (տե՛ս թեորեմ 12.20-ը), և այն ունի նորմալ բաշխում`  

𝛃̂ ~ ℕ𝒌(𝛃,  σ
2(𝕏𝑇𝛀−1𝕏)−1): 

 𝛃̂  գնահատականը կոչվում է ընդհանրացված նվազագույն քառա-

կուսիների գնահատական, որը կարող է ստացվել նաև՝ լուծելով 

min
𝛃
(𝐘 − 𝕏𝛃)𝑇𝛀−1(𝐘 − 𝕏𝛃) 

օպտիմալացման խնդիրը (տե՛ս դիտողություն 12.20, կետ 2):   

       Գործնականում, սակայն, 𝛀 մատրիցը սովորաբար լինում է անհայտ: 

Ենթադրենք, որ հայտնի է 𝛀 մատրիցի կառուցվածքը, այսինքն՝ որոշակի 

փոքր թվով 𝜃1, …, 𝜃𝑚 պարամետրերից դրա ֆունկցիոնալ կախվածության 

ձևը:  

       Նշանակենք` 𝛉 = ‖𝜃1, … , 𝜃𝑚‖
𝑇 և ենթադրենք, որ 𝛃 ու (σ2, 𝛉) պա-

րամետրերը ֆունկցիոնալ անկախ են: Դիցուք 𝛉̂ = (𝛉̂𝑛)-ը 𝛉 պարամետրի 

որոշակի ունակ գնահատական է, և նշանակենք՝  𝛀̂ = 𝛀(𝛉̂):  

Հասանելի ընդհանրացված նվազագույն քառակուսիների եղանակի 

գնահատական (Feasible Generalised Least Squares (𝐅𝐆𝐋𝐒) Estimator) 

կոչվում է հետևյալ վիճականին` 

𝛃̂𝐹𝐺𝐿𝑆 = (𝕏
𝑇𝛀̂−1𝕏)

−1
𝕏𝑇𝛀̂−1𝐘 

       Թեորեմ 12.23: Դիցուք տրված է  𝐘 = 𝕏𝛃 + 𝛆, 𝛆 ~ ℕ𝑛(𝟎, σ
2𝛀(𝛉)) նորմալ 

գծային ռեգրեսիոն մոդելը, և բավարարվում են հետևյալ պայմանները՝ 
 

1

𝑛
(𝕏𝑇𝛀̂−1𝕏)  

P 
→ ℚ ,   

1

𝑛
(𝕏𝑇𝛀̂−1𝛆)  

P
→  𝟎 ,   𝑛 → ∞ ,  

 

որտեղ ℚ-ն որոշակի չվերասերված մատրից է: Այդ դեպքում 𝛃 պարա-

մետրի  𝛃̂𝐹𝐺𝐿𝑆  գնահատականն ունակ է: 
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Ա պ ա ց ու ց ու մ: Ներկայացնենք 𝛃̂𝐹𝐺𝐿𝑆 գնահատականը հետևյալ 

տեսքով՝ 

𝛃̂𝐹𝐺𝐿𝑆 = 𝛃 + [
1

𝑛
(𝕏𝑇𝛀̂−1𝕏)]

−𝟏

[
1

𝑛
 ( 𝕏𝑇𝛀̂−1𝛆)]

−𝟏

:                 (12.69) 
 

 

Այստեղից կստանանք պահանջված զուգամիտությունը:   
    

Ճշմարտանմանության մաքսիմումի գնահատականներ  

Այժմ  

 𝐘 = 𝕏𝛃 + 𝛆,     𝛆 ~ ℕ𝑛(𝟎, σ
2𝛀(𝛉)) 

 

ռեգրեսիոն մոդելի համար գտնենք 𝛃,  σ2 և 𝛉 = ‖𝜃1, … , 𝜃𝑚‖
𝑇 պարամետ-

րերի ճշմարտանմանության մաքսիմումի գնահատականները: 
 

 𝐘 ~ ℕ𝑛(𝕏𝛃, σ
2𝛀(𝛉)) մոդելի ճշմարտանմանության ֆունկցիան (տե՛ս 

Հ. 33) կլինի` 
 

𝑓𝛃,σ,𝛉(𝐘) =∏𝑓𝛃,σ,𝛉(𝑌𝑖) =

𝑛

𝑖=1

(2𝜋)−𝑛 2⁄ (σ2)−𝑛 2⁄ |𝛀|−1 2⁄ × 

 

× exp {−
1

2σ2
 (𝐘 − 𝕏𝛃)𝑇𝛀−1(𝐘 − 𝕏𝛃)} , 

 

որտեղ 𝑓𝛃,σ,𝛉(𝑦)-ը, 𝑌𝑖 պատահական մեծությունների խտության ֆունկ-

ցիան է: Այնուհետև լոգարիթմական ճշմարտանմանության ֆունկցիայի 

համար կստանանք` 
 

𝐿𝛃,σ,𝛉(𝐘) = ln 𝑓𝛃,σ,𝛉(𝐘) = 
 

−
𝑛

2
 ln(2𝜋) −

𝑛

2
 ln(𝜎2) + 

 

+
1

2
 ln|𝛀−𝟏|

 
−
1

2𝜎2
 (𝐘 − 𝕏𝛃)𝑇𝛀−1(𝐘 − 𝕏𝛃): 

 

 

Կազմենք ճշմարտանմանության հավասարումների համակարգը 

(տե՛ս Հ. 25)՝ 
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{
 
 
 
 
 

 
 
 
 
 
𝜕𝐿𝛃,σ,𝛉(𝐘)

𝜕𝛃
= − 

1

2𝜎2
 ∙
𝜕

𝜕𝛃
(𝐘𝑇𝛀−1𝐘 − 2𝛃𝑇𝕏𝑇𝛀−1𝐘 + 𝛃𝑇𝕏𝑇𝛀−1𝕏𝛃) =             

=
1

2σ2
∙ 2𝕏𝑇𝛀−1(𝐘 − 𝕏𝛃) = 𝟎 ,                                                                                       

 
𝜕𝐿𝛃,σ,𝛉(𝐘)

𝜕σ2
= − 

𝑛

2σ2 
+
1

2σ4
 (𝐘 − 𝕏𝛃)𝑇𝛀−1(𝐘 − 𝕏𝛃) = 0,                                    

 
 

𝜕𝐿𝛃,σ,𝛉(𝐘)

𝜕𝜃𝑗
=
1

2
∙
𝜕

𝜕𝜃𝑗
 ln|𝛀−1(𝛉)| −

1

2σ2
 (𝐘 − 𝕏𝛃)𝑇 (

𝜕𝛀−1(𝛉)

𝜕𝜃𝑗
)(𝐘 − 𝕏𝛃) = 0,

𝑗 = 1,… ,𝑚 ∶

 

 
 

Այստեղից կստանանք, որ համակարգի (𝛃̂,  σ̂2, 𝛉̂) լուծումը բավարա-

րում է հետևյալ պայմանները՝ 
 

{
 
 

 
  𝛃̂ = (𝕏

𝑇𝛀̂−1𝕏)
−1
𝕏𝑇𝛀̂−1𝐘,

 σ̂2 =
1

𝑛
(𝐞𝑇𝛀̂−1𝐞),                

𝐞𝑇ℂ̂𝑗𝐞

𝐞𝑇𝛀̂−1𝐞
=
1

𝑛
(
𝜕 ln|𝛀̂−1|

𝜕𝜃𝑗
) ,

 

 

որտեղ 

𝛀̂−1 ∶= 𝛀−1(𝛉̂) ,   ℂ̂𝑗 ∶=
𝜕𝛀̂−1

𝜕𝜃𝑗
 ,   𝐞 = 𝐘 − 𝕏𝛃̂ ∶ 

 

Կարելի է ցույց տալ, որ 𝛃̂,  σ̂2 և 𝛉̂ վիճականիները 𝛃, σ2 և 𝛉 պարա-

մետրերի ճշմարտանմանության մաքսիմումի գնահատականներ են: 

 

       § 12.10.  Գծային սահմանափակումների պայմանների  

       դեպքում ընդհանրացված ռեգրեսիոն մոդելների  

       համար վարկածների ստուգում 

 

1. Դիցուք դիտարկվում է  
 

𝐘 = 𝕏𝛃 + 𝛆,  𝛆 ~ ℕ(𝟎,𝛀)                                      (12.70) 
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ընդհանրացված նորմալ գծային ռեգրեսիոն մոդելը, որտեղ դրական 

որոշյալ 𝑛 × 𝑛– չափանի 𝛀 մատրիցը հայտնի է: Պահանջվում է ստուգել  

ℍ0: ℝ𝛃 = 𝐫 

գծային սահմանափակումների վերաբերյալ ℍ0 վարկածը, որտեղ 𝛃-ն` 

𝑘 × 1 –չափանի անհայտ գործակիցների վեկտոր է, ℝ-ը՝ հայտնի 𝑞 × 𝑘 – 

չափանի մատրից (rank (ℝ) = 𝑞), իսկ 𝐫-ը՝ հայտնի 𝑞 × 1 –չափանի 

վեկտոր (𝑞 < 𝑘):  

Կդիտարկենք ℍ0 վարկածը ստուգելու համար տարբեր մոտեցում-

ների վրա հիմնված երեք հայտանիշ (տե՛ս [10]):  

        Լեմմա 12.6: (12.70) ռեգրեսիոն մոդելի 𝛃 պարամետրի ճըշմարտա-

նմանության մաքսիմումի 𝛃̂𝑀𝐿 գնահատականը համընկնում է ընդ-

հանրացված նվազագույն քառակուսիների  𝛃̂𝐺𝐿𝑆 գնահատականի հետ, 

այսինքն՝ 

𝛃̂𝑀𝐿 =  𝛃̂𝐺𝐿𝑆 = (𝕏
𝑇𝛀−1𝕏)−1𝕏𝑇𝛀−1𝐘 ∶ 

Ա պ ա ց ու ց ու մ:  (12.70) մոդելի համար գտնենք լոգարիթմական 

ճշմարտանմանության ֆունկցիան (տե՛ս § 12.9)` 

 

𝐿𝛃(𝐘) = − 
𝑛

2
 ln(2𝜋) +

1

2
 ln|𝛀−1| −

1

2
 (𝐘 − 𝕏𝛃)𝑇𝛀−1(𝐘 − 𝕏𝛃): 

 

Այստեղից՝ ճշմարտանմանության հավասարումը կլինի՝ 

𝜕𝐿𝛃(𝐘)

𝜕𝛃
= 𝕏𝑇𝛀−1(𝐘 − 𝕏𝛃) = 0,                                (12.71) 

որտեղից՝ 

 𝕏𝑇𝛀−1𝐘 = 𝕏𝑇𝛀−1𝕏𝛃, 

 

այնպես որ՝ 

𝛃̂ ∶= 𝛃̂𝑀𝐿 = (𝕏
𝑇𝛀−1𝕏)−1𝕏𝑇𝛀−1𝐘 =  𝛃̂𝐺𝐿𝑆: 

 

Դիտողություն 12.22:  𝐿𝛃(𝐘) ֆունկցիայի մաքսիմալ արժեքը կլինի՝ 
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𝐿𝛃̂(𝐘) = − 
𝑛

2
 ln(2𝜋) +

1

2
 ln|𝛀−1| −

1

2
 𝐞𝑇𝛀−1𝐞,                 (12.72) 

 

որտեղ 𝐞 = 𝐘 − 𝕏𝛃̂ -ը (12.70) մոդելի մնացորդների վեկտորն է: Մյուս 

կողմից, ածանցելով (12.71) բանաձևի  երկու  մասերն  ըստ  𝛃𝑇-ի  (տե՛ս  

Հ. 25) և վերցնելով մաթ.սպասումը, կստանանք Ֆիշերի տեղեկատվական 

մատրիցը (տե՛ս [15])՝ 

𝕀(𝛃) = − E (
𝜕2𝐿𝛃(𝐘)

𝜕𝛃𝝏𝛃𝑇
) = 𝕏𝑇𝛀−1𝕏: 

 

       Այժմ գտնենք ℝ𝛃 = 𝐫 սահմանափակումների դեպքում (12.70) մոդելի 

𝛃  պարամետրի ճշմարտանմանության մաքսիմումի  𝛃̂ℝ գնահատականը: 

       Թեորեմ 12.24: ℝ𝛃 = 𝐫 գծային սահմանափակումներով (12.70) ռեգրե-

սիոն մոդելի ճշմարտանմանության մաքսիմումի 𝛃̂ℝ գնահատականը 

տրվում է հետևյալ բանաձևով՝ 
 

 

𝛃̂ℝ = 𝛃̂ − (𝕏
𝑇𝛀−1𝕏)−1ℝ𝑇[ℝ(𝕏𝑇𝛀−1𝕏)−1ℝ𝑇]−1(ℝ𝛃̂ − 𝐫):     (12.73) 

Ա պ ա ց ու ց ու մ:  Դիտարկենք Լագրանժի ֆունկցիան՝ 

𝐻(𝛃 ;  𝛌) = 𝐿𝛃(𝐘) − 𝛌
𝑇(ℝ𝛃 − 𝐫), 

որտեղ 𝛌 = ‖𝜆1, … , 𝜆𝑞‖
𝑇
-ն Լագրանժի բազմապատկիչների վեկտորն է: 

Պայմանական էքստրեմումի պայմանները հանգեցնում են հետևյալ 

համակարգին՝ 
 

{
 

 
𝜕𝐻(𝛃; 𝛌)

𝜕𝛃
= 𝟎,                          

𝜕𝐻(𝛃; 𝛌)

𝜕𝛌
= −(ℝ𝛃− 𝐫) = 𝟎,

 

 

կամ՝ 

{
𝑿𝑇𝛀−1(𝐘 − 𝑿𝛃) − ℝ𝑇𝛌 = 𝟎,
ℝ𝛃 = 𝐫:                                      

                               (12.74)  
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(12.74) համակարգի լուծումները նշանակելով 𝛃̂ℝ-ով և 𝛌̂ℝ-ով՝ կստա-

նանք` 

𝛃̂ℝ= (𝕏𝑇𝛀−1𝕏)-1(𝕏𝑇𝛀−1𝐘 − ℝ𝑇𝛌̂ℝ) =𝛃̂ −(𝕏𝑇𝛀−1𝕏)-1ℝ𝑇𝛌̂ℝ:        (12.75) 

Հետևաբար՝  

𝒓 = ℝ𝛃̂ℝ = ℝ𝛃̂ − [ℝ(𝕏
𝑇𝛀−1𝕏)−1ℝ𝑇]−1𝛌̂ℝ:                    (12.76) 

Արտահայտելով (12.76)-ից 𝛌̂ℝ-ը՝ կունենանք` 

𝛌̂ℝ = [ℝ(𝕏
𝑇𝛀−1𝕏)−1ℝ𝑇]−1(ℝ𝛃̂ − 𝐫):                          (12.77) 

Այժմ տեղադրելով 𝛌̂ℝ-ի այս արժեքը (12.75) բանաձևի մեջ՝ կստա-

նանք (12.73) ներկայացումը:             ∎ 

 𝐿𝛃(𝐘) լոգարիթմական ճշմարտանմանության ֆունկցիայի մաքսիմալ 

արժեքն է՝  

𝐿𝛃̂ℝ(𝐘) = − 
𝑛

2
 ln(2𝜋) +

1

2
 ln|𝛀−1| −

1

2
 𝐞ℝ
𝑇𝛀−1𝐞ℝ,                 (12.78) 

որտեղ 𝐞ℝ = 𝐘 − 𝕏𝛃̂ℝ-ը  ℝ𝛃 = 𝐫 սահմանափակումներով (12.70) մոդելի 

մնացորդների վեկտորն է: 
 

ℍ𝟎 վարկածի ստուգման հայտանիշներ 

Վալդի հայտանիշը  (𝑾𝒂𝒍𝒅 (𝐖) 𝒕𝒆𝒔𝒕) 

Վալդի հայտանիշը հիմնված է այն փաստի վրա, որ ℍ0 վարկածը 

բավարարվելու դեպքում ℝ𝛃̂ վեկտորը պետք է լինի 𝒓 վեկտորին «մոտ» 

(որը հետևում է  ℝ𝛃̂ 
P
→ℝ𝛃  զուգամիտությունից, երբ  𝑛 → ∞): 

        Թեորեմ 12.25: Դիցուք տրված է (12.70) ռեգրեսիոն մոդելը: ℍ0 

վարկածը բավարարվելու դեպքում 

𝐖= (ℝ𝛃̂ − 𝐫)
𝑇
[ℝ(𝕏𝑇𝛀−1𝕏)−1ℝ𝑇]−1(ℝ𝛃̂ − 𝐫) ~ ℍ2(𝑞) 

վիճականին ունի 𝒒 ազատության աստիճաններով  𝝌𝟐բաշխում : 
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Ա պ ա ց ու ց ու մ:  Լեմմա 12.6 -ից ունենք` 

𝛃̂ = (𝕏𝑇𝛀−1𝕏)−1𝕏𝑇𝛀−1𝐘 = 𝛃 + (𝕏𝑇𝛀−1𝕏)−1𝕏𝑇𝛀−1𝛆 ∶ 

Այստեղից, ℍ0 վարկածը բավարարվելու դեպքում կստանանք` 
 

 

 ℝ𝛃̂ − 𝐫 ~ ℕ𝑞(𝟎 , ℝ(𝕏
𝑇𝛀−1𝕏)−1ℝ𝑇),                             (12.79) 

քանի որ 

E(ℝ𝛃̂ − 𝐫) = ℝ𝛃 − 𝐫 = 𝟎, 
 

 

𝕍(ℝ𝛃̂ − 𝐫) = ℝ𝕍(𝛃̂)ℝ𝑇 = ℝ(𝕏𝑇𝛀−1𝕏)−1ℝ𝑇: 
 

Այժմ, կիրառելով թեորեմ Հ. 34-ը, կստանանք պահանջված պնդումը:   ∎  
 

Այսպիսով, 𝛼 նշանակալիության մակարդակով ℍ0 վարկածը 

կհերքվի, եթե 

𝑤 > 𝜒𝛼
2(𝑞)  (𝐖(𝜔0) = 𝑤): 

 

Դիտողություն 12.23: Նշենք այստեղ, որ Վալդի հայտանիշն օգտա-

գործում է միայն պարամետրերի վրա սահմանափակումներ չդրված 

մոդելի 𝛃̂ գնահատականը: 

Լագրանժի բազմապատկիչների հայտանիշը  

(𝑳𝒂𝒈𝒓𝒂𝒏𝒈𝒆 𝑴𝒖𝒍𝒕𝒊𝒑𝒍𝒊𝒆𝒓 (𝐋𝐌) 𝒕𝒆𝒔𝒕 )  

Լագրանժի հայտանիշը հիմնված է այն գաղափարի վրա, որ ℍ0 վար-

կածը բավարարվելու դեպքում, բոլոր Լագրանժի բազմապատկիչները 

պետք է լինեն հավասար զրոյի, այսինքն, և 𝛌̂ℝ վեկտորը պետք է լինի 

«մոտ» զրոյին  (𝛌̂ℝ 
P
→ 0,  երբ 𝑛 → ∞): 

        Թեորեմ 12.26: Դիցուք տրված է (12.70) ռեգրեսիոն մոդելը: ℍ0 

վարկածը բավարարվելու դեպքում  
 

𝐋𝐌= 𝐞ℝ
𝑇  𝛀−1𝕏(𝕏𝑇𝛀−1𝕏)−1𝕏𝑇 𝛀−1𝐞ℝ ~ ℍ2(𝑞) (𝐞ℝ = 𝐘 − 𝕏𝛃̂ℝ)  

վիճականին ունի 𝒒 ազատության աստիճաններով 𝝌𝟐բաշխում: 

Ա պ ա ց ու ց ու մ: ℍ0 վարկածը բավարարվելու դեպքում (12.77)-ից և 

(12.79)-ից կստանանք` 
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𝛌̂ℝ ~ ℕ𝑞(𝟎 , [ℝ(𝕏
𝑇𝛀−1𝕏)−1ℝ𝑇]−1): 

Հետևաբար, կիրառելով թեորեմ Հ. 34-ը, կունենանք` 

𝜒𝑞
2 = 𝛌̂ℝ

𝑇ℝ(𝕏𝑇𝛀−1𝕏)−1ℝ𝑇𝛌̂ℝ ~ ℍ
2(𝑞):                          (12.80) 

Այժմ, ի նկատի ունենալով (12.74)-ը, այսինքն՝ որ 

𝕏𝑇𝛀−1𝐞ℝ = ℝ
𝑇𝝀̂ℝ (𝐞ℝ = 𝐘 − 𝕏𝛃̂ℝ), 

կստանանք  

𝜒𝑞
2 = 𝐞ℝ

𝑇  𝛀−1𝕏(𝕏𝑇𝛀−1𝕏)−1𝕏𝑇𝛀−1𝐞ℝ = 𝐋𝐌 

համարժեք ներկայացումը:       

Դիտողություն 12.24: Ի տարբերություն Վալդի հայտանիշի՝ Լագրան-

ժի հայտանիշը օգտագործում է միայն պարամետրերի վրա սահմանա-

փակումներ դրված մոդելի 𝛃̂ℝ գնահատականները: 

Ճշմարտանմանության հարաբերության հայտանիշը (տե՛ս § 9.6) 

( 𝑳𝒊𝒌𝒆𝒍𝒊𝒉𝒐𝒐𝒅 𝑹𝒂𝒕𝒊𝒐 (𝐋𝐑) 𝒕𝒆𝒔𝒕) 

 Ճշմարտանմանության հարաբերության հայտանիշը օգտագործում է 

ինչպես սահմանափակումներով, այնպես էլ առանց սահմանափա-

կումների ռեգրեսիոն մոդելները: Հայտանիշը հիմնված է այն փաստի 

վրա, որ եթե սահմանափակումները տեղի ունեն (ℍ0 վարկած), ապա 

ճշմարտանմանության ֆունկցիաների մաքսիմալ արժեքների հարաբե-

րությունը սահմանափակումով և առանց սահմանափակումների ռեգրե-

սիաների համար պետք է լինի մեկին մոտ մեծություն՝ 
 

𝑓𝛃̂ℝ(𝐘)

𝑓𝛃̂(𝐘)

P
→1,      երբ  𝑛 → ∞: 

        Թեորեմ 12.27: Դիցուք տրված է (12.70) ռեգրեսիոն մոդելը: ℍ0 

վարկածը բավարարվելու դեպքում  

𝐋𝐑 = −𝟐(𝑳𝛃̂ℝ(𝐘) − 𝑳𝛃̂(𝐘)) = 𝐞ℝ
𝑇 𝛀−1𝐞ℝ − 𝐞

𝑇𝛀−1𝐞 ~ ℍ2(𝑞)  

վիճականին ունի 𝒒 ազատության աստիճաններով 𝝌𝟐բաշխում : 
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       Ա պ ա ց ու ց ու մ:  𝕏𝛃̂ℝ = 𝕏𝛃̂ − 𝕏(𝛃̂ − 𝛃̂ℝ) ներկայացումից հետևում է` 

 

𝐞ℝ = 𝐞 + 𝕏(𝛃̂ − 𝛃̂ℝ), 

որտեղից կստանանք` 

𝛀− 1𝐞ℝ = 𝛀
− 1𝐞 + 𝛀− 1𝕏(𝛃̂ − 𝛃̂ℝ):                  (12.81)  

Մյուս կողմից, ունենք` 
 

𝐞ℝ
𝑇  𝛀−1𝐞ℝ = [𝐞

𝑇 + (𝛃̂ − 𝛃̂ℝ)
𝑇
𝕏𝑇]𝛀− 1[𝐞 +  𝕏(𝛃̂ − 𝛃̂ℝ)] = 

= 𝐞𝑇𝛀−1𝐞 + (𝛃̂ − 𝛃̂ℝ)
𝑇
𝕏𝑇𝛀− 1𝕏(𝛃̂ − 𝛃̂ℝ):              (12.82) 

Այստեղ օգտագործվել է հետևյալ պայմանը՝ 

𝕏𝑇𝛀− 1𝐞 = 𝕏𝑇𝛀− 1(𝐘 − 𝕏𝛃̂) = 𝕏𝑇𝛀− 1𝐘 − 𝕏𝑇𝛀− 1𝕏𝛃̂ = 
 

= 𝕏𝑇𝛀− 1𝐘 − 𝕏𝑇𝛀− 1𝕏(𝕏𝑇𝛀−1𝕏)−1𝕏𝑇𝛀−1𝐘 = 0:  
 

 

Այնուհետև, (12.72), (12.78), (12.82), (12.75) և (12.80)-ից կստանանք`  
 

𝐋𝐑 = 𝐞ℝ
T 𝛀−1𝐞ℝ − 𝐞

𝑇𝛀−1𝐞 = (𝛃̂ − 𝛃̂ℝ)
𝑇
𝕏𝑇𝛀− 1𝕏(𝛃̂ − 𝛃̂ℝ) = 

 

 

= 𝛌̂ℝ
𝑇ℝ(𝕏𝑇𝛀−1𝕏)−1(𝕏𝑇𝛀−1𝕏)(𝛃̂ − 𝛃̂ℝ) = 𝛌̂ℝ

𝑇ℝ(𝛃̂ − 𝛃̂ℝ) = 
 

= 𝛌̂ℝ
𝑇ℝ(𝕏𝑇𝛀−1𝕏)−1ℝ𝑇𝛌̂ℝ = 𝐋𝐌 ~ ℍ

2(𝑞):                     (12.83) 
 

Դիտողություն 12.25: (12.76) ներկայացումից հետևում է` 
 

ℝ𝛃̂ − 𝐫 = ℝ(𝕏𝑇𝛀−1𝕏)−1ℝ𝑇𝛌̂ℝ, 
 

(ℝ𝛃̂ − 𝐫)
𝑇
= 𝛌̂ℝ

𝑇ℝ(𝕏𝑇𝛀−1𝕏)−1ℝ𝑇: 
 

 

Այնպես որ, Վալդի 𝐖 վիճականին կներկայացվի հետևյալ տեսքով՝ 
 

𝐖 = (ℝ𝛃̂ − 𝐫)
𝑇
[ℝ(𝕏𝑇𝛀−1𝕏)−1ℝ𝑇]−1(ℝ𝛃̂ − 𝐫) = 

 

= 𝛌̂ℝ
𝑇ℝ(𝕏𝑇𝛀−1𝕏)−1ℝ𝑇[ℝ(𝕏𝑇𝛀−1𝕏)−1ℝ𝑇]−1ℝ(𝕏𝑇𝛀−1𝕏)−1ℝ𝑇𝛌̂ℝ = 

 

= 𝛌̂ℝ
𝑇ℝ(𝕏𝑇𝛀−1𝕏)−1ℝ𝑇𝛌̂ℝ = 𝐋𝐌: 

 

Այստեղից, հաշվի առնելով նաև (12.83)-ը, կստանանք, որ այդ հայ-

տանիշների վիճականիները համընկնում են, այսինքն՝  𝐋𝐌 = 𝐋𝐑 = 𝐖: 
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       Այժմ դիցուք ընդհանրացված նորմալ գծային ռեգրսին մոդելում 𝛀 

մատրիցն անհայտ է, սակայն հայտնի է այդ մատրիցի կառուցվածքը, 

այսինքն՝ 𝛀 = 𝛀(𝛉) մատրիցը որոշակի ֆունկցիա է անհայտ 𝑚 –չափանի 

𝛉 պարամետրից: Այդ դեպքում տեղի ունեն Վալդի, Լագրանժի բազմա-

պատկիչների և ճշմարտանմանության հարաբերության ասիմպտոտիկ 

հայտանիշները (տե՛ս Greene [20])․  
 

        Թեորեմ 12.28: ℍ0 վարկածը բավարարվելու դեպքում ճիշտ են ըստ 

բաշխման հետևյալ զուգամիտությունները, երբ    𝑛 → ∞՝ 
 

𝐖= (ℝ𝛃̂ − 𝐫)
𝑇
[ℝ(𝕏𝑇𝛀̂−1𝕏)

−1
ℝ𝑇]

−1
(ℝ𝛃̂ − 𝐫)  

𝑑
→  ℍ2(𝑞), 

 

𝐋𝐌 = 𝐞ℝ
𝑇  𝛀̂ℝ

−1𝕏(𝕏𝑇𝛀̂ℝ
−1𝕏)

−1
𝕏𝑇𝛀̂ℝ

−1𝐞ℝ  
𝑑
→  ℍ2(𝑞), 

 

𝐋𝐑 = −𝟐(𝑳𝛃̂ℝ(𝐘) − 𝑳𝛃̂(𝐘)) = 𝒆ℝ
𝑇  𝛀̂ℝ

−1𝐞ℝ −𝐞
𝑇𝛀̂−1𝐞 

𝑑
→ ℍ2(𝑞), 

 

 

որտեղ 𝛀̂ = 𝛀(𝛉̂) − ը, 𝛀̂ℝ =𝛀(𝛉̂ℝ) − ը,   𝛃̂-ը և 𝛉̂-ը առանց սահմանա-

փակումների մոդելի համար 𝛃 և 𝛉 պարամետրերի ճշմարտանմանության 

մաքսիմումի գնահատականներն են, իսկ 𝛃̂ℝ-ը և 𝛉̂ℝ-ը՝ սահմանափա-

կումներով մոդելի համար ճշմարտանմանության մաքսիմումի գնա-

հատականները: 

 

        Թեորեմ 12.29 (Բրեուշ ):  ℍ0 վարկածը բավարարվելու դեպքում ճիշտ 

է հետևյալ անհավասարությունը՝ 
 

𝐋𝐌 ≤ 𝐋𝐑 ≤ 𝐖: 

Ա պ ա ց ու ց ու մ:  Նկատենք, որ 𝛃̂ վիճականին 

𝐿𝛃,𝛉̂(𝐘) = − 
𝑛

2
 ln(2𝜋) +

1

2
 ln|𝛀̂−1| −

1

2
 (𝐘 − 𝕏𝛃)𝑇𝛀̂−1(𝐘 − 𝕏𝛃) 

լոգարիթմական ճշմարտանմանության ֆունկցիայի համար մաքսիմումի 

կետն է, իսկ  𝛃̂𝑅 վիճականին՝ 𝑹𝛃 = 𝒓 սահմանափակումների դեպքում՝ 

𝐿𝛃,𝛉̂R(𝐘) = − 
𝑛

2
 ln(2𝜋) +

1

2
 ln| 𝛀̂𝑅

−1| −
1

2
 (𝐘 − 𝕏𝛃)𝑇𝛀̂𝑅

−1(𝐘 − 𝕏𝛃) 
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ֆունկցիայի համար պայմանական մաքսիմումի կետը: 

Այժմ սահմանենք հետևյալ երկու վեկտորը՝ 𝛃̂u-ն, որը 𝐿𝛃,𝛉̂R(𝐘) ֆունկ-

ցիայի համար (ոչ պայմանական) մաքսիմումի կետն է, և 𝛃̂r-ը՝ ℝ𝛃 = 𝐫 

սահմանափակումների դեպքում 𝐿𝛃,𝛉̂(𝐘) ֆունկցիայի պայմանական մաք-

սիմումի կետը: Հայտնի 𝛉 պարամետրի դեպքում նախորդ կետում ստաց-

ված արդյունքները հանգեցնում են 𝐖, 𝐋𝐌 և 𝐋𝐑 վիճականիների հետևյալ 

ներկայացումներին՝  
 

𝐖 = −2 (𝐿𝛃̂r,𝛉̂(𝐘) − 𝐿𝛃̂,𝛉̂(𝐘)),  
 

𝐋𝐌 = −2 (𝐿𝛃̂R,𝛉̂R(𝐘) − 𝐿𝛃̂u,𝛉̂R(𝐘)), 
 

𝐋𝐑 = −2 (𝐿𝛃̂R,𝛉̂R(𝐘) − 𝐿𝛃̂,𝛉̂(𝐘)): 
 

Այստեղից հեշտ է ստանալ, որ 
 

𝐋𝐑 − 𝐋𝐌 = 2 (𝐿𝛃̂R,𝛉̂R(𝐘) − 𝐿𝛃̂u,𝛉̂R(𝐘)) ≥ 0, 
 

𝐖−𝐋𝐑 = 2 (𝐿𝛃̂R,𝛉̂R(𝐘) − 𝐿𝛃̂r,𝛉̂(𝐘)) ≥ 0: 
 

Այսպիսով՝ 
 

 𝐋𝐌 ≤ 𝐋𝐑 ≤ 𝐖:        

Դիտողություն 12.26: Ստացված անհավասարությունը ցույց է տալիս, 

որ նմուշի բավականաչափ «մեծ» հաստատուն 𝑛 ծավալի համար միևնույն 

կրիտիկական արժեքը կիրառելու դեպքում այդ հայտանիշների նշանա-

կալիության մակարդակը կլինի տարբեր:  

 

       Խնդիրներ 
 

12.19.  Դիցուք դիտարկվում է  

𝐘 = 𝕏𝛃 + 𝛆,  𝛆 ~ ℕ(𝟎, σ2𝛀) 

նորմալ գծային ռեգրեսիոն մոդելը, որտեղ համաչափ դրական որոշյալ 

𝑛 × 𝑛 – չափանի 𝛀 մատրիցը հայտնի է: Ցույց տալ, որ ℝ𝛃 = 𝐫 սահմանա-

փակումների դեպքում  
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𝐹 =
(ℝ𝛃̂ − 𝐫)

𝑇
[ℝ(𝕏𝑇𝛀−1𝕏)−1ℝ𝑇]−1(ℝ𝛃̂ − 𝐫) 𝑞⁄

 (𝐘 − 𝕏𝛃̂)
𝑇
𝛀−1(𝐘 − 𝕏𝛃̂) (𝑛 − 𝑘)⁄

 ~ 𝕊(𝑞, 𝑛 − 𝑘), 

 

𝛃̂-ը առանց սահմանափակումներով մոդելի ՃՄ գնահատականն է: 
 

Ցուցում՝ տե՛ս թեորեմ 12.20-ը:  

12.20. Գտնել  𝕍(𝛃̂𝐺𝐿𝑆, 𝛃̂𝐺𝐿𝑆 − 𝛃̂𝑂𝐿𝑆) համատեղ կովարիացիոն մատրի-

ցը, որտեղ  𝛃̂𝐺𝐿𝑆 = (𝕏
𝑇𝛀−1𝕏)−1𝕏𝑇𝛀−1𝐘,  𝛃̂𝑂𝐿𝑆 = (𝕏

𝑇𝕏)−1𝕏𝑇𝐘: 

 

 Ցուցում՝ ցույց տալ, որ 
 

 𝛃̂𝐺𝐿𝑆 − 𝛃̂𝑂𝐿𝑆 = (𝕏𝑇𝛀−1𝕏)−1𝕏𝑇𝛀−1𝕄𝐘,  որտեղ 𝕄 = 𝔼𝑛 − 𝕏(𝕏𝑇𝕏)−1𝕏𝑇 : 
 

Պատասխան՝  𝕍(𝛃̂𝐺𝐿𝑆, 𝛃̂𝐺𝐿𝑆 − 𝛃̂𝑂𝐿𝑆 ) = 𝟎: 
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Հավելված I 

Որոշ գաղափարներ մատրիցների տեսությունից  

 

Նշանակենք 𝔸 = ‖𝑎𝑖𝑗‖𝑖,𝑗=1
𝑛,𝑚

-ով 𝑛 ×𝑚-չափանի (𝑛 տող և  𝑚 սյունակ 

պարունակող) մատրիցը,  𝑛 × 𝑚-չափանի 0-ական մատրիցը կնշանա-

կենք 𝟎𝑛×𝑚-ով: 𝑛-չափանի 0-ական սյունակ վեկտորը կնշանակենք 𝟎𝑛-

ով: 𝑛 × 𝑛-չափանի միավոր մատրիցը կնշանակվի 𝔼𝑛-ով, իսկ 𝑛 × 𝑛-չա-

փանի անկյունագծային մատրիցը՝  

𝚲𝑛 = ‖
𝜆1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝜆𝑛

‖ = diag (𝜆1 ,   …,   𝜆𝑛): 

Սահմանում Հ. 1: 𝔸 = ‖𝑎𝑖𝑗‖𝑖,𝑗=1
𝑛,𝑚

 մատրիցի շրջված (տրանսպոնաց-

ված) մատրից է կոչվում  𝑚 × 𝑛 – չափանի  𝔸𝑇 = ‖𝑎𝑗𝑖‖𝑗,𝑖=1
𝑚,𝑛

 մատրիցը:  

Հատկություններ`  

(𝔸 + 𝔹)𝑇 = 𝔸𝑇 +𝔹𝑇 ,   (𝔸𝑇)𝑇 = 𝔸,   (𝔸𝔹)𝑇 = 𝔹𝑇𝔸𝑇: 

Սահմանում Հ. 2: Քառակուսային 𝔸 = ‖𝑎𝑖𝑗‖𝑖,𝑗=1
𝑛

 մատրիցի հետք կոչ-

վում է նրա անկյունագծային տարրերի գումարը՝ 
 

tr (𝔸) =∑𝑎𝑖𝑖:

 

 

 

Հատկություններ` 
 

tr (𝔼𝒏) = 𝑛,   tr (𝛼𝔸) = 𝛼 tr (𝔸) (𝛼 ∈ ℝ) ,   tr ( 𝔸
𝑇) = tr (𝔸),  

 

tr (𝔸 ± 𝔹) = tr (𝔸) ± tr (𝔹),   tr (𝔸𝔹) = tr (𝔹𝔸): 

 𝐚 = ‖𝑎1, 𝑎2, … , 𝑎𝑛‖
𝑇 վեկտորի համար ( այստեղ և հետագայում վեկ-

տորները դիտարկվում են որպես սյունակ վեկտորներ)` 
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tr (𝐚𝐚𝑻) =∑𝑎𝑖
2:

 

 

 

Նշանակենք 𝔸 = ‖𝑎𝑖𝑗‖𝑖,𝑗=1
𝑛

 մատրիցի որոշիչը (դետերմինանտը) 

det  𝔸 = |𝔸|-ով: 

 Հատկություններ` 

|𝔸𝔹| = |𝔸||𝔹|,   |𝚲𝑛| =∏𝜆𝑖

𝒏

𝒊=𝟏

,   |𝛼𝔸| = 𝛼𝑛|𝔸| (𝛼 ∈ ℛ),   |𝔸𝑇| = |𝔸|: 

Սահմանում Հ. 3: Քառակուսային 𝔸 մատրիցը կոչվում է չվերասեր-

ված, եթե |𝔸| ≠ 0: Հակառակ դեպքում, երբ |𝔸| = 0, 𝔸 մատրիցը կոչվում է 

վերասերված: 

Սահմանում Հ. 4: Չվերասերված 𝔸 մատրիցի հակադարձ մատրիցը 

(նշանակվում է 𝔸−1-ով) այնպիսի մատրից է, որը բավարարում է 

𝔸𝔸−1 = 𝔸−1𝔸 = 𝔼𝑛 

պայմանը: 

Հատկություններ` 

(𝔸−1)−1 = 𝔸,   (𝔸−1)𝑇 = (𝔸𝑇)−1,   |𝔸−1| = |𝔸|−1,   (𝔸𝔹)−1 = 𝔹−1𝔸−1: 

Սահմանում Հ. 5: 𝑛 ×𝑚-չափանի 𝔸 = ‖𝑎𝑖𝑗‖𝑖,𝑗=1
𝑛,𝑚

 մատրիցի ռանգ կոչ-

վում է դրա մաքսիմալ գծայնորեն անկախ տողերի (կամ սյունակների) 

թիվը:  

Հատկություններ` 

 

1. Եթե 𝔹-ն  𝑚 ×𝑚 - չափանի մաքսիմալ ռանգի մատրից է, այսինքն՝ 

rank (𝔹) = 𝑚, ապա  rank (𝔸𝔹) = rank (𝔸),  

2. եթե ℂ - ն  𝑛 × 𝑛 – չափանի մաքսիմալ ռանգի մատրից է, այսինքն՝ 

rank (ℂ) = 𝑛, ապա  rank (ℂ𝔸) = rank (𝔸) 

3. rank (𝔸𝔸𝑇) = rank (𝔸𝑇𝔸) = rank (𝔸), 

4. եթե 𝑛 × 𝑛 – չափանի 𝔸 մատրիցը չվերասերված է, ապա  

rank (𝔸) = 𝑛:  
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Սահմանում Հ. 6: 𝐚 ∈ ℛ𝑛 վեկտորը (𝐚 ≠ 𝟎) կոչվում է 𝔸 = ‖𝑎𝑖𝑗‖𝑖,𝑗=1
𝑛

  

մատրիցի սեփական վեկտոր, իսկ 𝜆 ∈ ℛ-ն՝ համապատասխան սեփական 

արժեք, եթե ճիշտ է 

 

𝔸𝐚 = 𝜆𝐚   կամ  (𝔸 − 𝜆𝔼𝑛)𝐚 = 𝟎 
 

հավասարությունը:  

Սահմանում Հ. 7:  𝑛 × 𝑛 - չափանի 𝕆 մատրիցը կոչվում է օրթոգոնալ, 

եթե 

𝕆𝑇𝕆 = 𝕆𝕆𝑇 = 𝔼𝑛, 
 

 

այսինքն՝ եթե 𝕆 մատրիցի տողերը (սյունակները) օրթոգոնալ են և ունեն 

միավոր երկարություններ (օրթոնորմալ վեկտորներ են): 

Հատկություններ` 

𝕆𝑇 = 𝕆−1,   |𝕆| = ±1: 

 

Համաչափ մատրիցներ 

 Սահմանում Հ. 8: 𝑛 × 𝑛 - չափանի (քառակուսային) 𝔸 = ‖𝑎𝑖𝑗‖𝑖,𝑗=1
𝑛

 

մատրիցը կոչվում է համաչափ (սիմետրիկ), եթե 𝔸T = 𝔸, այսինքն՝ եթե 

𝑎𝑖𝑗 = 𝑎𝑗𝑖 ,  𝑖, 𝑗 = 1,… , 𝑛: 

        Պնդում Հ. 9 (տե՛ս Рао [12]): Համաչափ 𝔸 մատրիցը օրթոգոնալ 𝕆 

մատրիցի միջոցով «բերվում» է անկյունագծային տեսքի, այսինքն՝ 
 

 𝕆𝑇𝔸𝕆 = 𝚲𝑛,                                                    (Հ. 1.1) 
 

որտեղ անկյունագծային 𝚲𝑛(𝚲)մատրիցի տարրերը 𝔸 մատրիցի սեփա-

կան արժեքներն են: 

Դիտողություն Հ. 10: (Հ. 1.1) բանաձևը կարելի է նաև ներկայացնել 

որպես 𝔸 մատրիցի վերլուծություն օրթոգոնալ և անկյունագծային մատ-

րիցների 

 𝔸 = 𝕆𝚲𝕆𝑇:                                                    (Հ. 1.2) 

Հատկություններ` 
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1. Եթե 𝔸-ն 𝑛 × 𝑛 - չափանի համաչափ մատրից է, ապա 

tr (𝔸) =∑𝜆𝑖 ,

𝑛

𝑖=1

 

որտեղ  𝜆𝑖-երը 𝔸 մատրիցի սեփական արժեքներն են: 
 

Ա պ ա ց ու ց ու մ: Համաձայն (Հ. 1.2)-ի և մատրիցի հետքի հատկու-

թյան՝ ունենք` 

tr (𝔸) = tr (𝕆𝚲𝕆𝑇) = tr(𝚲𝕆𝑇𝕆) = tr (𝚲): 
 

2. Համաչափ 𝔸 մատրիցի ռանգը հավասար է նրա ոչ զրոյական 

սեփական արժեքների թվին:  
 

Ա պ ա ց ու ց ու մ: Համաձայն (Հ. 1.2)-ի և մատրիցի ռանգի հատ-

կությանների՝ ունենք`  

 rank (𝔸) = rank (𝕆𝚲𝕆𝑇) = rank (𝚲): 
 

3. Կամայական 𝔸 մատրիցի համար 𝔸T𝔸 մատրիցը համաչափ է՝ 
 

(𝔸𝑇𝔸)𝑇 = 𝔸𝑇𝔸 :  
 

4. Կամայական  𝑛 × 𝑛 - չափանի համաչափ 𝔸 մատրիցն ունի 𝒏 հատ 

օրթոնորմալ սեփական վեկտոր: 
 

Ոչ բացասական որոշյալ մատրիցներ 

 Սահմանում Հ. 11: 𝑛 × 𝑛 – չափանի համաչափ 𝔸 = ‖𝑎𝑖𝑗‖𝑖,𝑗=1
𝑛

 մատ-

րիցը կոչվում է ոչ բացասական որոշյալ և նշանակվում է 𝔸 ≥ 0, եթե բոլոր 

𝐱 ∈ ℛ𝑛-ից վեկտորների համար 

𝐱𝑇𝔸 𝐱 = ∑ 𝑎𝑖𝑗𝑥𝑖𝑥𝑗 ≥ 0

𝑛 

𝑖,𝑗=1 

: 

Հատկություններ` 
 

1. Եթե 𝔸 ≥ 0, ապա այդ մատրիցի բոլոր սեփական արժեքները ոչ 

բացասական են` 𝜆𝑖 ≥ 0, 𝑖 = 1, … , 𝑛: 
 

Ա պ ա ց ու ց ու մ: Դիցուք 𝐱 -ը 𝜆  սեփական արժեքով սեփական 

վեկտոր է` 
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𝔸𝐱 = 𝜆𝐱: 

Այդ դեպքում՝ 

𝐱𝑇𝔸 𝐱 = 𝐱𝑇(𝜆 𝐱) = 𝜆(𝐱𝑇𝐱) ≥ 0, 

որտեղից հետևում է, որ 𝜆 ≥ 0:  
 

2. Ոչ բացասական որոշյալ մատրիցի հետքը ոչ բացասական է, 

այսինքն` 

𝔸 ≥ 𝟎 ⟹  tr (𝔸) ≥ 0: 

Ա պ ա ց ու ց ու մ:  Քանի որ 𝔸 -ն համաչափ մատրից է, ապա 
 

tr (𝔸) = ∑𝜆𝑖 ,

 𝑛

 𝑖=1

 

 

որտեղ 𝜆𝑖-երը այդ մատրիցի սեփական արժեքներն են: Մյուս կողմից, 

համաձայն 1-ին հատկութան` 𝜆𝑖 ≥ 0,    𝑖 = 1,… , 𝑛:  
 

3. Կամայական 𝑛 ×𝑚 - չափանի 𝔸 մատրիցի համար 𝔸T𝔸 մատրիցը 

ոչ բացասական որոշյալ է`  𝔸𝑇𝔸 ≥ 0: 
 

Ա պ ա ց ու ց ու մ:  Ցանկացած  𝐱 ∈ ℛ𝑚 վեկտորի համար ունենք` 
 

𝐱𝑇(𝔸𝑇𝔸)𝐱 = (𝔸𝐱)𝑇(𝔸𝐱) = 𝐲𝑇𝐲 = ∑𝒚𝒊
𝟐 ≥ 𝟎:

 𝒏

𝒊=𝟏 

 

 

4. Որպեսզի 𝑛 × 𝑛 - չափանի 𝒓 ռանգ ունեցող 𝔸 մատրիցը լինի ոչ 

բացասական որոշյալ, անհրաժեշտ է և բավարար, որ գոյություն ունենա 

այնպիսի 𝒓 ռանգ ունեցող 𝑛 × 𝑛 - չափանի ℝ մատրից, որ 𝔸 = ℝℝ𝑇: 

Ա պ ա ց ու ց ու մ: Ապացուցենք անհրաժեշտ պայմանը: Քանի որ 𝔸-ն 

համաչափ մատրից է, ապա, բերելով այն անկյունագծային տեսքի (տե՛ս 

Հ. 9), կստանանք` 

𝕆𝑇𝔸𝕆 = 𝚲, 
 

որտեղ 𝕆-ն օրթոգոնալ մատրից է: Այստեղից ունենք` 
 

tr (𝚲) = tr (𝕆𝑇𝔸𝕆) = tr (𝔸𝕆𝕆𝑇) = tr (𝔸): 

Այսպիսով` 
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tr (𝔸) =∑𝜆𝑖 ,

𝑛

𝑖=1

  𝜆𝑖 ≥ 0,   𝑖 = 1,… , 𝑛: 

 

Մյուս կողմից, rank (𝔸) = 𝑟, ուստի 

tr (𝔸) =∑𝜆𝑖 ,

𝑟

𝑖=1

 

 

 

որտեղ 𝜆𝑖 > 0, 𝑖 = 1, … , 𝑟: Այժմ սահմանենք հետևյալ 𝑛 × 𝑛-չափանի 

անկյունագծային մատրից` 
 

𝚲1 2⁄ = diag (𝜆1
1 2⁄ , … , 𝜆𝑟

1 2⁄ , 0,… , 0): 
 

Ներկայացնենք 𝔸 մատրիցը հետևյալ տեսքով` 

𝔸 = 𝕆𝚲𝕆𝑇 = 𝕆𝚲1 2⁄ 𝚲1 2⁄ 𝕆𝑇 = ℝℝ𝑇: 

Օգտվելով մատրիցի ռանգին վերաբերող հատկությունից կունենանք` 

rank (ℝ) = rank (𝕆𝚲1 2⁄ ) = rank(𝚲1 2⁄ ) = 𝑟: 

Ընդհակառակն, դիցուք տեղի ունի 𝔸 = ℝℝ𝑇 ներկայացումը, որտեղ 

rank (ℝ) = 𝑟: Այդ դեպքում՝ 

rank (𝔸) = rank (ℝ) = 𝑟: 

Մյուս կողմից` կամայական  𝐱 ∈ ℛ𝑛-ից վեկտորի համար կստանանք` 
 

𝐱𝑻𝔸 𝐱 = 𝐱𝑻ℝℝ𝑻𝐱 = 𝒚𝑇𝒚 ≥ 𝟎։ 

 

Դրական որոշյալ մատրիցներ 

Սահմանում Հ. 12: 𝑛 × 𝑛 - չափանի համաչափ  𝔸 = ‖𝑎𝑖𝑗‖𝑖,𝑗=1
𝑛

մատրիցը 

կոչվում է դրական որոշյալ և նշանակվում 𝔸 > 0, եթե բոլոր 𝐱 ∈ ℛ𝑛-ից 

(𝐱 ≠ 𝟎) վեկտորների համար՝ 
 

𝐱𝑇𝔸 𝐱 = ∑ 𝑎𝑖𝑗𝑥𝑖𝑥𝑗 > 0

𝑛

𝑖,𝑗=1

: 

Հատկություններ` 
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1. Եթե 𝔸 > 0, ապա այդ մատրիցի բոլոր սեփական արժեքները 

դրական են` 

𝜆𝑖 > 0,   𝑖 = 1,… , 𝑛: 
 

Ա պ ա ց ու ց ու մ:  Դիցուք  𝐱-ը 𝜆  սեփական արժեքով սեփական 

վեկտոր է` 

𝔸𝐱 = 𝜆𝐱: 
 

Այդ դեպքում տեղի ունի հետևյալ պայմանը` 
 

 

𝐱𝑇𝔸𝐱 = 𝐱𝑇(𝜆𝐱) = 𝜆(𝐱𝑇𝐱) > 0, 
 

 

որտեղից հետևում է, որ  𝜆 > 0:  
 

2. Դրական որոշյալ 𝔸 մատրիցը չվերասերված է, այսինքն՝ |𝔸| ≠ 0: 

Ա պ ա ց ու ց ու մ: Քանի որ 𝔸 -ն համաչափ մատրից է, ապա 𝔸-ի 

ռանգը հավասար է այդ մատրիցի ոչ զրոյական սեփական արժեքների 

թվին (տես համաչափ մատրիցների 2-րդ հատկությունը)` 

 

rank (𝔸) = rank (𝚲) = tr (𝚲) =∑𝜆𝑖,

𝑟

𝑖=1

  𝜆𝑖 > 0,   𝑖 = 1,… , 𝑛: 

Այսպիսով` 

|𝔸| = |𝕆𝚲𝕆𝑇| = |𝚲| =∏𝜆𝑖 > 0 ∶

𝑟

𝑖=1

  

 

3. 𝔸 մատրիցը դրական որոշյալ է այն և միայն այն դեպքում, երբ 

գոյություն ունի այնպիսի չվերասերված ℝ մատրից, որ 𝔸 = ℝℝ𝑻: 
 

Ա պ ա ց ու ց ու մ: Հատկությունը հետևում է ոչ բացասական որոշյալ 

մատրիցի 4-րդ հատկությունից, երբ  𝑟 = 𝑛 : 

4. Եթե 𝔸-ն դրական որոշյալ մատրից է, ապա 𝔸−𝟏 մատրիցը 

նույնպես դրական որոշյալ է:  
 

Ա պ ա ց ու ց ու մ: Ներկայացնենք 𝔸−1 մատրիցը հետևյալ ձևևով 

(տե՛ս 3-րդ կետը)` 
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𝔸−𝟏 = (ℝℝ𝑇)−1 = (ℝ𝑇)−1ℝ−1 = (ℝ−𝟏)
𝑇
ℝ−𝟏 = 𝕌𝕌𝑇 , 

որտեղ ℝ-ը չվերասերված մատրից է: Ակնհայտ է, որ 𝕌 մատրիցը նույն-

պես չվերասերված է: Իրոք, օգտվելով շրջված և հակադարձ մատրիցի 

հատկություններից, կստանանք` 

|𝕌| = |(ℝ−𝟏)
𝑇
| = |ℝ−𝟏| = |ℝ|−1 ≠ 0: 

5. Եթե 𝑛 × 𝑘 - չափանի (𝑘 < 𝑛) 𝔸 մատրիցի համար rank (𝔸) = 𝑘, 

ապա  𝔸𝑇𝔸 մատրիցը դրական որոշյալ է`  𝔸𝑇𝔸 > 0: 
 

Ա պ ա ց ու ց ու մ: Կամայական 𝐱 ∈ ℛ𝑛-ից վեկտորների համար 

ունենք` 

𝐱𝑇(𝔸𝑇𝔸)𝐱 = 𝒚𝑇𝒚 ≥ 0, 
 

 

որտեղ 𝒚𝑇𝒚 = 0 այն և միայն այն դեպքում, երբ  𝔸𝐱 = 𝟎: Այստեղից` 
 
 

𝔸𝐱 = ‖

𝑎11 . . . . . 𝑎1𝑘  
. . . . . . . . . . . . .
. . . . . . . . . . . . .
𝑎𝑛1 . . . . . 𝑎𝑛𝑘

‖‖

𝑥1
⋮
⋮
𝑥𝑛

‖ = 𝟎 

 
 

համակարգն ունի միայն 𝐱 = 0 լուծումը, քանի որ rank (𝔸) = 𝑘:  
 

 

6. 𝔸 մատրիցը դրական որոշյալ է այն և միայն այն դեպքում, երբ դրա 

բոլոր գլխավոր մինորները (ներառյալ |𝔸| որոշիչը) դրական են: 
 

Ա պ ա ց ու ց ու մ: Ապացուցենք անհրաժեշտ պայմանը: Համաձայն 

կետ 1-ի`  

|𝔸| = |𝕆𝚲𝕆𝑇| = |𝕆||𝚲||𝕆𝑇| = |𝚲| =∏𝜆𝑖 > 0:

 

 

 

Դիտարկենք հետևյալ մատրիցը` 

𝔸𝑟 = ‖

𝑎11 … 𝑎1𝑟
… … …
𝑎𝑟1 … 𝑎𝑟𝑟

‖    և   𝐱𝑟 = ‖

𝑥1
⋮
𝑥𝑟
‖ ,   𝑟 ≤ 𝑛  

 

վեկտորը: Այդ դեպքում ճիշտ է հետևյալ պայմանը, որտեղ  𝐱𝑟 ≠ 0` 
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𝐱𝑟
𝑇𝔸𝑟𝐱𝑟 = ‖𝐱𝑟

𝑇 , 𝟎𝑛−𝑟
𝑇 ‖ 𝔸‖

𝐱𝑟
𝟎𝑛−𝑟
 ‖ > 0, 

այսինքն՝ 𝔸𝑟-ը դրական որոշյալ մատրից է, ուստի՝  |𝔸𝑟| > 0, 𝑟 = 1,… , 𝑛 : 

Բավարար պայմանի ապացույցը տե՛ս, օրինակ, Рао [12]:  

7. Դրական որոշյալ մատրիցի բոլոր անկյունագծային տարրերը 

դրական են: 
 

Ա պ ա ց ու ց ու մ:  Դիտարկենք 𝑛 × 1 -չափանի  

𝐞(𝑖) = ‖𝛿𝑖1 ,   …,   𝛿𝑖𝑖 ,   … ,   𝛿𝑖𝑛‖
𝑇 ,   𝑖 = 1,   … ,   𝑛  

վեկտորները (𝛿𝑖𝑗-ն Կրոնեկերի սիմվոլն է): Այդ դեպքում  

0 < [𝐞(𝑖)]𝑇𝔸 𝐞(𝑖) = 𝑎𝑖𝑖: 

 

Իդեմպոտենտ և պրոեկցիոն մատրիցներ 

Սահմանում Հ. 13: Քառակուսային 𝔸 մատրիցը կոչվում է իդեմպո-

տենտ, եթե  

𝔸2 = 𝔸: 
 

Համաչափ իդեմպոտենտ մատրիցը կոչվում է պրոեկցիոն մատրից, 

այսինքն` 

𝔸𝑇 = 𝔸  և  𝔸2 = 𝔸 : 

        Պնդում Հ. 14:  1. Իդեմպոտենտ  𝔸 մատրիցի սեփական արժեքները 

բաղկացած են միայն  0 և  1 թվերից: 

 2.  Պրոեկցիոն  𝔸 մատրիցի ռանգը հավասար է դրա հետքին՝ 
 

 

rank (𝔸) = tr (𝔸): 

Ա պ ա ց ու ց ու մ: 1. Դիցուք 𝐚 ∈ ℛ𝑛-ն 𝔸 մատրիցի սեփական վեկտորն 

է, իսկ 𝜆 ∈ ℛ-ը՝ դրա սեփական արժեքը, այսինքն՝ ճիշտ են հետևյալ 

առնչությունները՝ 

𝜆𝐚 = 𝔸𝐚 = 𝔸2𝐚 =  𝔸(𝜆𝐚) = 𝜆(𝔸𝐚) = 𝜆2𝐚 , 

 

որտեղից՝  
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 (𝜆 − 𝜆2)𝐚 = 𝟎 և 𝜆 = 0  կամ  𝜆 = 1 (𝐚 ≠ 0): 

 2. Քանի որ 𝔸 մատրիցը համաչափ է, ապա, համաձայն համաչափ 

մատրիցների 2-րդ հատկության, rank (𝔸) = rank (𝚲): Ակնհայտ է, որ 𝚲 

մատրիցի ռանգը հավասար է դրա անկյունագծի ոչ զրոյական տարրերի 

թվին, այսինքն՝ 1-երին հավասար սեփական արժեքների թվին, հետևա-

բար՝ 

 rank (𝔸) = rank (𝚲) = tr (𝚲):                              (Հ. 1.3) 
 

Մյուս կողմից, օգտվելով համաչափության հատկության կետ 1-ից և 

պնդում Հ. 14-ի կետ 1-ից, կստանանք`  
 

tr (𝔸) = ∑𝜆𝑖

 𝑛

𝑖=1 

= tr (𝚲):                                      (Հ. 1.4)  

 

Վերջապես` (Հ. 1.3)-ից և (Հ. 1.4)-ից հետևում է, որ  rank (𝔸) = tr (𝔸):  

        Պնդում Հ. 15: Եթե 𝔸 մատրիցը իդեմպոտենտ է, ապա այդպիսին է և 

𝔼 − 𝔸 մատրիցը:  

Ա պ ա ց ու ց ու մ: Տեղի ունեն հետևյալ ակնհայտ հավասարություն-

ները` 

(𝔼 − 𝔸)2 = 𝔼− 2𝔸 + 𝔸2 = 𝔼 − 2𝔸 + 𝔸 =  𝔼 − 𝔸 :  
 

        Պնդում Հ. 16:  Պրոեկցիոն մատրիցը ոչ բացասական որոշյալ է: 

Ա պ ա ց ու ց ու մ: Կամայական 𝐱 ∈ ℛ𝑛 վեկտորի համար ունենք` 

𝐱𝑇𝔸 𝐱 = 𝐱𝑇𝔸2𝐱 = (𝔸𝐱)𝑇(𝔸𝐱) = 𝐲𝑇𝐲 ≥ 0: 

 

Օրթոգոնալ պրոեկտման մատրից  (տե՛ս Себер [13]) 

Դիցուք 𝛀 ⊂ ℛ𝑛՝ էվկլիդեսյան ℛ𝑛տարածության 𝑘-չափանի (dim(𝛀) =

= 𝑘) ենթատարածություն է: 

Սահմանում Հ. 17: 𝛀 ⊂ ℛ𝑛 ենթատարածության օրթոգոնալ լրացում  

կոչվում է  
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𝛀⊥ = {𝐯 ∈ ℛ𝑛 ∶  𝐯𝑇𝐮 = 0  բոլոր  𝐮 ∈ 𝛀} ⊂ ℛ𝑛 
 

 

ենթատարածությունը (dim(𝛀⊥) = 𝑛 − 𝑘):  
 

Ցանկացած  𝐲 ∈ ℛ𝑛 վեկտոր միակ ձևով ներկայացվում է 

𝐲 = 𝐮 + 𝐯 

տեսքով, որտեղ 𝐮 ∈ 𝛀, 𝐯 ∈ 𝛀⊥:   

Սահմանում Հ. 18: ℙΩ𝐲 = 𝐮 բանաձևով միարժեք որոշվող 𝑛 × 𝑛 -

չափանի ℙΩ մատրիցը կոչվում է 𝐲-ի 𝛀 ⊂ ℛ𝑛 ենթատարածության վրա 

օրթոգոնալ պրոեկտման մատրից: 

        Թեորեմ Հ. 19: Օրթոգոնալ պրոեկտման ℙΩ մատրիցը կարելի է ներ-

կայացնել 

ℙΩ = 𝕒𝕒
𝑇 

 

տեսքով, որտեղ 𝑛 × 𝑘 – չափանի 𝕒 մատրիցի սյունակները ներկայացնում 

են  𝛀  ենթատարածության օրթոնորմալ բազիս : 

Ա պ ա ց ու ց ու մ:  Դիցուք 𝐚1, … , 𝐚𝑘 ∈ 𝛀`  𝛀-ի օրթոնորմալ բազիս է, 

𝕒 = ‖𝐚1, … ,  𝐚𝑘‖ օրթոնորմալ 𝑛 × 1 սյունակ վեկտորներից կազմված 

մատրից է: Ընդլայնենք այդ բազիսը մինչև ℛ𝑛 տարածության 𝐚1 , … ,  𝐚𝑘 ,  

𝐚𝑘+1 , … , 𝐚𝑛 օրթոնորմալ բազիսը: Կամայական 𝐲 ∈ ℛ𝑛-ից վեկտոր 

կներկայացվի 

𝐲 =∑𝑐𝑖𝐚𝑖 =∑𝑐𝑖𝐚𝑖 +

𝑘

𝑖=1

𝑛

𝑖=1

∑ 𝑐𝑖𝐚𝑖

𝑛

𝑖=𝑘+1

= 𝐮 + 𝐯 

 

տեսքով, որտեղ 𝐮 ∈ 𝛀, 𝐯 ∈ 𝛀⊥ : Մյուս կողմից, քանի որ  𝐚𝑖
𝑇𝐚𝑗 = 𝛿𝑖𝑗 , ապա 

𝐚𝑖
𝑇𝐲 = 𝑐𝑖,  𝑖 = 1,… , 𝑛: Հետևաբար՝ 

 

𝐮 = ‖𝐚1, … , 𝐚𝑘‖‖

𝐚1
𝑇𝐲
⋮
𝐚𝑘
𝑇𝐲
‖ = (𝕒𝕒𝑇)𝐲 = ℙΩ𝐲 ∶ 
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       Հետևանք Հ. 20: ℙΩ մատրիցը համաչափ և իդեմպոտենտ (պրոեկցիոն) 

մատրից է : 

Ա պ ա ց ու ց ու մ: Պարզ է, որ  ℙΩ = 𝕒𝕒
𝑻 մատրիցը համաչափ է: Մյուս 

կողմից՝ 

ℙΩ
2 = (𝕒𝕒𝑻)(𝕒𝕒𝑻) = 𝕒(𝕒𝑻𝕒)𝕒𝑻 = 𝕒𝔼𝑘𝕒

𝑻 = ℙΩ: 

 

        Պնդում Հ. 21: 𝔼𝑛 − ℙΩ մատրիցը 𝛀⊥տարածության վրա օրթոգոնալ 

պրոեկտման մատրից է: 

Ա պ ա ց ու ց ու մ: 𝐲 = ℙΩ𝐲 + (𝔼𝑛 − ℙΩ)𝐲 ներկայացումից (𝒚 ∈ ℛ𝑛) 

հետևում է, որ 

𝐯 = (𝔼𝑛 − ℙΩ)𝐲 ∶= 𝐮
′ ∈ 𝛀⊥, իսկ  ℙΩ𝐲 ∶= 𝐯

′ ∈ ( 𝛀⊥)⊥ = 𝛀 : 

Սահմանում Հ. 22: 𝔸 մատրիցի պատկեր (𝓡(𝔸)) կոչվում է 𝔸 

մատրիցի սյունակներով ծնված տարածությունը: 

        Թեորեմ Հ. 23: Դիցուք  ℙ -ն պրոեկցիոն մատրից է: Այդ դեպքում այն 

կլինի  𝓡(ℙ) տարածության վրա օրթոգոնալ պրոեկտման մատրից : 

Ա պ ա ց ու ց ու մ: Ներկայացնենք կամայական 𝒚 ∈ ℛ𝑛 վեկտորը  

 

𝐲 = ℙ𝐲 + (𝔼𝑛 −ℙ)𝐲                                          (Հ. 1.5) 
 

տեսքով: Մյուս կողմից, քանի որ  
 

(ℙ𝐲)𝑇(𝔼𝑛 − ℙ)𝐲 = 𝐲
𝑇(ℙ − ℙ𝟐)𝐲 = 0, 

 

ապա (Հ. 1.5)-ը ներկայացնում է 𝐲 վեկտորի օրթոգոնալ անդամների 

տրոհում, որտեղ  ℙ𝐲 ∈ 𝓡(ℙ):  

        Թեորեմ Հ. 24: Դիցուք 𝑛 × 𝑘 -չափանիի 𝕏 մատրիցը գծայնորեն 

անկախ   սյունակներից   կազմված   մատրից   է:   Այդ   դեպքում     ℙΩ  =

= 𝕏(𝕏𝑇𝕏)−1𝕏𝑇 մատրիցը  𝛀 = 𝓡(𝕏) ⊂ ℛ𝑛 ենթատիրույթի վրա օրթոգոնալ 

պրոեկտման մատրից է :  
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Ա պ ա ց ու ց ու մ: Ներկայացնենք 𝕏 մատրիցը 𝕏 = 𝕒ℂ տեսքով, որտեղ 

𝕒 = ‖𝐚1, … , 𝐚𝑘‖
𝑻 օրթոնորմալ սյունակ վեկտորներից կազմված 𝑛 × 𝑘-

չափանի մատրից է (𝐚1, … ,  𝐚𝑘-երը  𝛀 = 𝓡(𝕏) ⊂ ℛ𝑛 ենթատիրույթի բա-

զիսն է), իսկ ℂ-ն՝ 𝑘 × 𝑘-չափանի չվերասերված (հակադարձելի) մատրից 

(𝐚1, … , 𝐚𝑘 բազիսից 𝕏 մատրիցի 𝑿̂1, … ,  𝑿̂𝑘 սյունակներից կազմված բազի-

սին անցման մատրից): Այսպիսով, կստանանք (տե՛ս թեորեմ Հ. 19)` 

ℙΩ = 𝕒𝕒
𝑻 = (𝕏ℂ−1)(ℂ−1)𝑇𝕏𝑇 = (𝕏ℂ−1)(ℂ𝑇)−1 𝕏𝑇 = 𝕏(ℂ𝑇ℂ)−1𝕏𝑇 = 

 = 𝕏(𝕏𝑇𝕏)−1𝕏𝑇: 

 

       Ածանցյալ ըստ վեկտորական արգումենտի 

Սահմանում Հ. 25: Ըստ 𝐱 = ‖𝑥1, … , 𝑥𝑛‖
𝑇  վեկտորական արգումենտի 

𝜑(𝐱) սկալյար ֆունկցիայի ածանցյալ կոչվում է հետևյալ վեկտորը՝ 
 

𝜕𝜑(𝐱)

𝜕𝐱
= ‖

𝜕𝜑(𝐱)

𝜕𝑥1
,   …,   

𝜕𝜑(𝐱)

𝜕𝑥𝑛
‖

𝑇

: 

 

        Մասնավորապես`  

1.  Եթե  𝜑(𝐱) = 𝐱𝑇𝐚 = ∑𝑎𝑖𝑥𝑖,   𝐚 = ‖𝑎1, … , 𝑎𝑛‖
𝑇 ,   ապա 

 𝑛

 𝑖=1

𝜕(𝐱𝑇𝐚)

𝜕𝐱
= 𝐚: 

 

 

2.  Եթե  𝜑(𝐱) = 𝐱𝑇𝔸 𝐱 = ∑ 𝑎𝑖𝑗𝑥𝑖𝑥𝑗 ,   𝔸 = ‖𝑎𝑖𝑗‖𝑖,𝑗=1
𝑛

 ,   ապա

 𝑛

𝑖,𝑗=1

 

 

 

𝜕(𝐱𝑇𝔸 𝐱)

𝜕𝑥𝑚
=∑𝑎𝑚𝑗𝑥𝑗  +  ∑𝑎𝑖𝑚𝑥𝑖 = ((𝔸 + 𝔸

𝑇)𝐱)
𝑚
 ,

 𝑛

𝑖=1

 𝑛

𝑗=1

 

 

այնպես որ, 

𝜕(𝐱𝑇𝔸 𝐱)

𝜕𝐱
= (𝔸 + 𝔸𝑇)𝐱 ∶ 

 

 

Եթե 𝔸 մատրիցը համաչափ է,ապա  
𝜕(𝐱𝑇𝔸 𝐱)

𝜕𝐱
= 2𝔸𝐱 ∶  
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Բլոկ - մատրիցներ 

 Սահմանում Հ. 26: 𝑛 ×𝑚-չափանի 𝔸 մատրիցը կոչվում է բլոկ 

մատրից, եթե այն տրոհված է հետևյալ մատրիցների (բլոկների)` 
 

 

𝔸 = ‖
𝔸11 𝔸12
𝔸21 𝔸22

‖,                                                (Հ. 1.6) 
 

 

որտեղ 𝔸𝑖𝑗-ն 𝑛𝑖 ×𝑚𝑗 - չափանի մատրիցներ են (𝑖, 𝑗 = 1, 2, 𝑛 = 𝑛1 + 𝑛2, 

𝑚 = 𝑚1 +𝑚2): 
 

 

Գործողություններ 
 

1. Միևնույն ձևով տրոհված  
 

𝔸 = ‖
𝔸11 𝔸12
𝔸21 𝔸22

‖    և   𝔹 = ‖
𝔹11 𝔹12
𝔹21 𝔹22

‖ 

 

երկու բլոկ մատրիցների գումար (այսինքն՝ ենթադրվում է, որ 𝔸𝑖𝑗  և 𝔹𝑖𝑗, 

𝑖, 𝑗 = 1,2 մատրիցների չափերը համընկնում են) կոչվում է  
 

𝔸 +𝔹 = ‖
𝔸11 +𝔹11 𝔸12 +𝔹12
𝔸21 +𝔹21 𝔸22 +𝔹22

‖ 

մատրիցը: 
 

 

2. Երկու  𝔸 և 𝔹  բլոկ մատրիցների արտադրյալ մատրից կոչվում է 
 

𝔸𝔹 = ‖
𝔸11𝔹11 + 𝔸12𝔹21 𝔸11𝔹12 + 𝔸12𝔹22
𝔸21𝔹11 + 𝔸22𝔹21 𝔸21𝔹12 + 𝔸22𝔹22

‖ 

 

մատրիցը, եթե 𝔸𝑖𝑗 մատրիցների սյունակների թիվը և 𝔹𝑗𝑘 մատրիցների 

տողերի թիվը համընկնում են բոլոր  𝑖, 𝑗, 𝑘 = 1,2 :  
 

Բլոկ մատրիցի որոշիչը 

 Դիցուք 𝑛 × 𝑛-չափանի 𝔸 մատրիցը տրոհված է բլոկների (տե՛ս 

(Հ. 1.6)) այնպես, որ 𝑛1 × 𝑛1-չափանի 𝔸11 և 𝑛2 × 𝑛2-չափանի 𝔸22 մատրից-
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ները հակադարձելի են: Այդ դեպքում 𝔸 մատրիցի որոշիչի համար ճիշտ է 

հետևյալ բանաձևը` 

|𝔸| = |
𝔸11 𝔸12
𝔸21 𝔸22

| = |𝔸11||𝔸22 − 𝔸21𝔸11
−1𝔸12| = |𝔸22||𝔸11 − 𝔸12𝔸22

−1𝔸21|: 

Մասնավոր դեպքում, երբ 𝔸12 և 𝔸21 մատրիցները 0-ական մատրիցներ 

են` 

𝔸 = ‖
𝔸11 𝟎𝑛1 ×𝑛2
𝟎𝑛2 ×𝑛1 𝔸22

‖ 

(այդպիսի  𝔸  մատրիցը կոչվում է անկյունագծային բլոկ մատրից), ապա 
 

 

|𝔸| = |
𝔸11 𝟎𝑛1 ×𝑛2
𝟎𝑛2 ×𝑛1 𝔸22

| = |𝔸11||𝔸22|: 

 

Բլոկ մատրիցի հակադարձ մատրիցը 
 

        Թեորեմ Հ. 27: Դիցուք 𝑛 × 𝑛-չափանի 𝔸 մատրիցը տրոհված է 

բլոկների (տե՛ս (Հ. 1.6)) այնպես, որ 𝔸11-ը և 𝔸22-ը քառակուսային 

հակադարձելի մատրիցներ են: Այդ դեպքում 𝔸 մատրիցի հակադարձ 

մատրիցը որոշվում է հետևյալ բանաձևից` 
 

𝔸−1 = ‖
𝔸11 𝔸12
𝔸21 𝔸22

‖
−1

= ‖
𝔸11 −𝔸11

−1𝔸12𝔸
22

−𝔸22
−1𝔸21 𝔸

11 𝔸22
‖, 

 
 

որտեղ 𝔸11 = (𝔸11 − 𝔸12𝔸22
−1𝔸21)

−1, 𝔸22 = (𝔸22 − 𝔸21𝔸11
−1𝔸12)

−1, 𝔸𝑖𝑗-երը 

𝑛𝑖 × 𝑛𝑗 –չափանի մատրիցներ են, 𝑖, 𝑗 = 1,2,  𝑛1 + 𝑛2 = 𝑛 : 

Ա պ ա ց ու ց ու մ:  Նշանակենք՝ 

𝔸−1 = ‖
𝔸11 𝔸12
𝔸21 𝔸22

‖
−1

= ‖𝔸
11 𝔸12

𝔸21 𝔸22
‖: 

Ըստ սահմանման՝ ունենք  𝔸𝔸−1 = 𝔼𝑛 կամ 

 ‖
𝔸11 𝔸12
𝔸21 𝔸22

‖‖𝔸
11 𝔸12

𝔸21 𝔸22
‖ = ‖

𝔼𝑛1 𝟎𝑛1×𝑛2
𝟎𝑛2×𝑛1 𝔼𝑛2

‖ : 
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Այստեղից, համաձայն բլոկ մատրիցների բազմապատկման կանոնի, 

կստանանք` 

𝔸𝔸−1 = ‖
𝔸11𝔸

11 +𝔸12𝔸
21 𝔸11𝔸

12 + 𝔸12𝔸
22

𝔸21𝔸
11 +𝔸22𝔸

21 𝔸21𝔸
12 + 𝔸22𝔸

22‖ = ‖
𝔼𝑛1 𝟎𝑛1×𝑛2
𝟎𝑛2×𝑛1 𝔼𝑛2

‖ ∶ 

Որտեղից ունենք` 

𝔸11𝔸
11 + 𝔸12𝔸

21 = 𝔼𝑛1 ,                                      (Հ. 1.7) 
 

𝔸21𝔸
11 + 𝔸22𝔸

21 = 𝔼𝑛2 ,                                      (Հ. 1.8) 
 

𝔸11𝔸
12 + 𝔸12𝔸

22 = 𝟎𝑛1×𝑛2 ,                                (Հ. 1.9) 
 

 𝔸21𝔸
11 +𝔸22𝔸

21 = 𝟎𝑛2×𝑛1:                             (Հ. 1.10) 
 

(Հ. 1.9) ներկայացումից կստանանք` 

𝔸12 = −𝔸11
−1𝔸12𝔸

22: 

Այնուհետև (Հ. 1.10)-ից կստանանք` 

𝔸21 = −𝔸22
−1𝔸21𝔸

11 ∶ 

Տեղադրելով ստացված արտահայտությունները համապատասխանաբար 

(Հ. 1.7) և (Հ. 1.8) բանաձևերի մեջ՝ կունենանք` 

𝔸11𝔸
11 − 𝔸12𝔸22

−1𝔸21𝔸
11 = 𝔼𝑛1 , 

 

−𝔸21𝔸11
−1𝔸12𝔸

22 +𝔸22𝔸
22 = 𝔼𝑛2: 

Որտեղից վերջնական կստանանք` 
 

𝔸11 = (𝔸11 − 𝔸12𝔸22
−1𝔸21)

−1, 

 𝔸22 = (𝔸22 − 𝔸21𝔸11
−1𝔸12)

−1:  
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Հավելված II 

Որոշ գաղափարներ հավանականությունների 

տեսությունից 

 

       Պատահական մատրից և պատահական վեկտոր 

 

Պատահական մատրիցի մաթեմատիկական սպասումը  

 

Դիցուք 𝕏 = ‖𝑋𝑖𝑗‖𝑖,𝑗=1
𝑛,𝑚

 -ը (𝑖 = 1,… , 𝑛, 𝑗 = 1,… ,𝑚) 𝑛 ×𝑚-չափանի 

մատրից է, որի 𝑋𝑖𝑗 տարրերը պատահական մեծություններ են (պատա-

հական մատրից): Ենթադրենք` 𝑋𝑖𝑗 պատահական մեծություններն ունեն 

վերջավոր մաթեմատիկական սպասումներ` E|𝑋𝑖𝑗| < ∞: 

Սահմանում Հ. 28: 𝕏 պատահական մատրիցի մաթեմատիկական 

սպասում կոչվում է 

E(𝕏) = ‖E(𝑋𝑖𝑗)‖𝑖,𝑗=1
𝑛,𝑚

 

մատրիցը: 

Հատկություններ` 

 

1. Եթե  𝔸 -ն, 𝔹 -ն  և  ℂ -ն համապատասխանաբար 𝑘 × 𝑛,  𝑚 × 𝑙  և 

𝑘 × 𝑙 -չափանի ոչ պատահական մատրիցներ են, ապա 

E(𝔸𝕏𝔹+ ℂ) = 𝔸[E(𝕏)]𝔹 + ℂ:  

Մասնավորապես`  
 

ա)  եթե 𝕏-ը 𝑛 × 1 -չափանի պատահական մատրից է (պատահական 

վեկտոր՝  𝕏 ∶= 𝐗) , ապա  
 

E(𝔸𝐗) = 𝔸[E(𝐗)], 
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եթե  𝕏 = 𝐗 -ը  𝑚 × 1 -չափանի պատահական վեկտոր է, ապա 

E(𝐗𝑇𝔹) =  [E(𝐗𝑇)]𝔹, 

բ)  եթե 𝔸-ն և 𝔹-ն 𝑛 × 𝑘-չափանի ոչ պատահական մատրիցներ են, 

իսկ  𝐗-ը և 𝐘-ը` 𝑘 × 1-չափանի պատահական վեկտորներ, ապա 

E(𝔸𝐗 + 𝔹𝐘) = 𝔸[E(𝐗)] + 𝔹[E(𝐘)]: 

 

Պատահական վեկտորի կովարիացիոն մատրից 

Դիցուք 𝐗 = ‖𝑋1, 𝑋2, … , 𝑋𝑛‖
𝑇-ն և 𝒀 = ‖𝑌1, 𝑌2, … , 𝑌𝑚‖

𝑇-ն 𝑛 × 1 - և 𝑚× 1 -

չափանի պատահական վեկտորներ են: 

 Սահմանում Հ. 29: 𝐗 և 𝐘 վեկտորների համատեղ կովարիացիոն 

մատրից կոչվում է հետևյալ մատրիցը` 
 

 𝕍(𝐗, 𝐘) = E [(𝐗 − E(𝐗))(𝐘 − E(𝐘))
𝑇
] = ‖cov (𝑋𝑖, 𝑌𝑗)‖𝑖,𝑗=1

𝑛,𝑚
∶ 

 

Հեշտ է տեսնել, որ 
 

 𝕍 (𝐗, 𝐘) = E(𝐗𝐘𝑇) − [E(𝐗)][E(𝐘)]𝑇: 

Հատկություններ` 

1. Եթե 𝔸 -ն և 𝔹 -ն համապատասխանաբար 𝑘 × 𝑛 - և  𝑙 × 𝑚 -չափանի 

ոչ պատահական մատրիցներ են, իսկ a-ն և b-ն` համապատաս-

խանաբար 𝑘 × 1 և 𝑙 × 1 -չափանի ոչ պատահական վեկտորներ, 

ապա 

 𝕍(𝔸𝐗 + 𝐚 , 𝔹𝐘 + 𝐛) = 𝔸𝕍(𝐗, 𝐘)𝔹𝑇 : 
 

2. Եթե 𝐗𝑖, 𝐘𝑖, 𝑖 = 1, 2, 𝑛 × 1 -չափանի պատահական վեկտորներ են, 

իսկ  𝑎𝑖 ,  𝑏𝑖 ∈ ℛ, ապա 
 

𝕍 (𝑎1𝐗1 + 𝑏1𝐘1,  𝑎2𝐗2 + 𝑏2𝐘2) = 𝑎1𝑎2 𝕍(𝐗1, 𝐗2) + 𝑎1𝑏2 𝕍 (𝐗1, 𝐘2) +   
  

+𝑏1𝑎2 𝕍 (𝐘1, 𝐗2) + 𝑏1𝑏2 𝕍 (𝐘1, 𝐘2): 

Սահմանում Հ. 30: Եթե 𝐗 = 𝐘, ապա 𝕍 (𝐗, 𝐗) ∶= 𝕍 (𝐗) մատրիցը կոչ-

վում է 𝐗 վեկտորի կովարիացիոն մատրից:  
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Այսպիսով` 

 

𝕍 (𝐗) = E [(𝐗 − E(𝐗))(𝐗 − E(𝐗))
𝑇
] = E(𝐗𝐗𝑇) − [E(𝐗)][E(𝐗)]𝑇 = 

 

= ‖cov (𝑋𝑖, 𝑋𝑗)‖𝑖,𝑗=1
𝑛,𝑚

∶ 

Պարզ է, որ 𝕍 (𝐗) կովարիացիոն մատրիցի գլխավոր անկյունագծի 

վրա գտնվում են 𝑋𝑖 պատահական մեծությունների var (𝑋𝑖) ցրվածքները, 

𝑖 = 1,… , 𝑛: Բացի այդ` ակնհայտ է, որ 𝕍 (𝐗)-ը համաչափ մատրից է: Եթե 

𝑛 = 1,  𝕍 (𝐗) = var (𝑋1): 
 

Հատկություններ` 
 

1. 𝕍 (𝔸𝐗) = 𝔸𝕍 (𝐗)𝔸𝑇: 
 

2. Եթե 𝐗 -ը և 𝐘 -ը 𝑛 × 1 -չափանի պատահական վեկտորներ են, իսկ 

𝑎 ,  𝑏 ∈ ℛ, ապա 
 

𝕍 (𝑎𝐗 + 𝑏𝐘) = 𝑎2 𝕍 (𝐗) + 2𝑎𝑏 𝕍 (𝐗, 𝐘) + 𝑏2𝕍 (𝐘) : 
 

Եթե  𝐗 և 𝐘 պատահական վեկտորներն անկախ են, ապա  
 

𝕍 (𝐗, 𝐘) = 𝟎𝑛×𝑛 , և 
 

𝕍 (𝑎𝐗 + 𝑏𝐘) = 𝑎2 𝕍 (𝐗) + 𝑏2𝕍 (𝐘) : 
 

3. 𝕍 (𝐗) մատրիցը ոչ բացասական որոշյալ է` 𝕍 (𝐗) ≥ 0: 
 

 Ա պ ա ց ու ց ու մ: Իրոք, կամայական 𝐭 = ‖𝑡1, 𝑡2, … , 𝑡𝑛‖
𝑇 վեկտորի 

համար ճիշտ է 

var (𝐭𝑇𝐗) = var (∑𝑡𝑖𝑋𝑖

𝑛

𝑖=1

)  ≥ 0 

 

անհավասարությունը: Մյուս կողմից` 
 

 

𝐭𝑇𝕍 (𝐗)𝐭 = 𝕍 (𝐭𝑇𝐱) = var (𝐭𝑇𝐱) ≥ 0 ∶  
 

Պատահական մատրիցի պայմանական մաթեմատիկական սպասում 

 Դիցուք 𝕏 = ‖𝑋𝑖𝑗‖𝑖,𝑗=1
𝑛,𝑘

-ը և 𝕐 = ‖𝑌𝑖𝑗‖𝑖,𝑗=1
𝑚,𝑙

-ը պատահական մատրիցներ 

են: 
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 Սահմանում Հ. 31: 𝕐 մատրիցի պայմանական մաթեմատիկական 

սպասում ըստ  𝕏  մատրիցի կոչվում է հետևյալ մատրիցը` 
 

E(𝕐|𝕏) = ‖E(𝑌𝑖𝑗|𝕏)‖𝑖,𝑗=1
𝑚,𝑙

 , 
 

 

որտեղ E(𝑌𝑖𝑗|𝕏) = E(𝑌𝑖𝑗|𝐗̂1, 𝐗̂𝟐, … , 𝐗̂𝑘), 𝐗̂𝑚-երը, 𝑚 = 1, … , 𝑘, 𝕏 մատրիցի 

սյունակ վեկտորներն են:  

Հատկություններ` 

 

1. Եթե  𝔸-ն ոչ պատահական մատրից է, ապա 
 

E(𝔸|𝕏) = 𝔸: 
 

2. Եթե 𝕐 ≤ ℤ (այսինքն` ℤ − 𝕐 ≥ 𝟎 ոչ բացասական որոշյալ մատրից 

է), ապա 

E(𝕐|𝕏) ≤ E(ℤ|𝕏): 
 

3. Եթե 𝔸-ն և 𝔹-ն 𝑘 × 𝑚-չափանի ոչ պատահական մատրիցներ են,   

ℂ-ն և 𝔻-ն`𝑙 × 𝑘 -չափանի ոչ պատահական մատրիցներ, իսկ 𝕐-ը և 

ℤ-ը` 𝑚× 𝑙 -չափանի պատահական մատրիցներ, ապա 

E(𝔸𝕐 + 𝔹ℤ|𝕏) =  𝔸E(𝕐|𝕏) + 𝔹E(ℤ|𝕏), 

E(𝕐ℂ + ℤ𝔻|𝕏) =  E(𝕐|𝕏)ℂ + E(ℤ|𝕏)𝔻 ∶  

4. E[E(𝕐|𝕏)] = E(𝕐) : 
 

5. Եթե 𝑔(𝕏)-ը 𝕏 պատահական մատրիցից որոշակի ֆունկցիա է, 

ապա 

E[E(𝕐|𝕏)|𝑔(𝕏)] = E(𝕐|𝕏) : 
 

6. Եթե 𝑔(𝕏)-ը և 𝜑(𝕏)-ը համապատասխանաբար 𝑘 × 𝑚- և 𝑙 × 𝑛 -

չափանի մատրիցներ են` կախված 𝕏 պատահական մատրիցից, 

ապա 

E[𝑔(𝕏)𝕐𝜑(𝕏)|𝕏] = 𝑔(𝕏)E(𝕐|𝕏)𝜑(𝕏) : 
 

7. Եթե 𝕐 և 𝕏 պատահական մատրիցներն անկախ են, ապա 
 

E(𝕐|𝕏) = E(𝕐) : 
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Պատահական վեկտորի պայմանական կովարիացիոն մատրից 

Սահմանում Հ. 32: 𝐘 պատահական վեկտորի` ըստ պատահական 𝕏 

մատրիցի պայմանական կովարիացիոն 𝕍(𝐘|𝕏 ) մատրից կոչվում է 

հետևյալ մատրիցը` 
 

𝕍(𝐘|𝕏 ) = E [(𝐘 − E(𝐘|𝕏 ))(𝐘 − E(𝐘|𝕏 ))
𝑇
|𝕏] =

E(𝐘𝐘𝑇|𝕏) − E(𝐘|𝕏 )(E(𝐘|𝕏 ))
𝑇

 : 

Հատկություն`  
 

Եթե 𝑔(𝕏)-ը 𝕏 պատահական մատրիցից կախված 𝑚 × 𝑛 -չափանի 

մատրից է, իսկ 𝒀-ը` 𝑛 × 1-չափանի պատահական վեկտոր, ապա 

𝕍(𝑔(𝕏)𝐘|𝕏) = 𝑔(𝕏)𝕍(𝐘|𝕏 )[𝑔(𝕏)]𝑇 : 

 

Բազմաչափ նորմալ բաշխում (տե՛ս Себер [13])  

Սամանում Հ. 33: 𝐗 = ‖𝑋𝟏, … , 𝑋𝑛‖
𝑇 պատահական վեկտորն ունի 

բազմաչափ նորմալ (Գաուսի) բաշխում (𝐗 ~ ℕ𝑛(𝐦,⅀)), եթե նրա 

խտության ֆունկցիան ներկայացվում է հետևյալ բանաձևով` 
 

𝑓(𝐱) = (2𝜋)−𝑛 2⁄ |⅀|−1 2⁄ exp {−
1

2
 (𝐱 −𝐦)𝑇⅀−1(𝐱 −𝐦)} , 

 

որտեղ 𝐱 = ‖𝑥1, … , 𝑥𝑛‖
𝑻 ∈ ℛ𝑛, 𝐦 = ‖𝑚1, … ,𝑚𝑛‖

𝑇 ∈ ℛ𝑛, ⅀ > 0` դրական 

որոշյալ  𝑛 × 𝑛 - չափանի մատրից է, և  |⅀| = det(⅀): 
 

       Թեորեմ Հ. 34:  Եթե  𝐗 ~ ℕn(𝐦,⅀), ապա 
 

1.  ∫ 𝑓(𝐱)𝑑𝐱 = 1 (𝑑𝐱 = 𝑑𝑥1 ×⋯× 𝑑𝑥𝑛),
 

ℛ𝑛
 

 

այսինքն` 𝑓(𝒙)-ը բազմաչափ խտության ֆունկցիա է :  
 

2.   E(𝐗) = 𝐦,   𝕍(𝐗) = ⅀ ∶ 
 

3.   𝜒𝑛
2 = (𝐗 −𝐦)𝑇 ⅀−𝟏(𝐗 −𝐦) ~ ℍ2(𝑛)` 

 

𝜒𝑛
2 պատահական մեծությունն ունի 𝑛 ազատության աստիճաններով 𝝌𝟐 

բաշխում: 
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Ա պ ա ց ու ց ու մ: 1. Քանի որ ⅀ մատրիցը դրական որոշյալ է, ապա 

(տե՛ս պնդում Հ. 9) գոյություն ունի օրթոգոնալ 𝕆 մատրից այնպիսին, որ 

𝕆𝑇⅀ 𝕆 = 𝚲, որտեղ 𝚲 = diag (𝜆1, … , 𝜆𝑛) անկյունագծային մատրից է, իսկ 

𝜆𝑖 > 0` ⅀ մատրիցի սեփական արժեքներն են: Կատարենք փոփոխականի 

փոխարինում` 𝐱 −𝐦 = 𝕆𝐲: Այս ձևափոխության յակոբիանը հավասար է  

𝒥 = det ‖
𝜕𝑥𝑖
𝜕𝑦𝑗
‖
𝑖,𝑗=1

𝑛

= det𝕆 = ±1, 

որտեղից  𝒥  յակոբիանի մոդուլը կլինի հավասար |𝒥| = 1:  

Մյուս կողմից, ունենք՝ 

𝚲−1 = (𝕆𝑇⅀ 𝕆)−1 = 𝕆−1⅀−1𝕆 = 𝕆𝑇⅀−1𝕆, 

այնպես որ, 

𝕆𝑇⅀−1𝕆 = diag (𝜆1
−1, … , 𝜆𝑛

−1): 

Գտնենք հետևյալ ինտեգրալի արժեքը` 
 

 

∫ exp {−
1

2
 (𝐱 −𝐦)𝑇⅀−1(𝐱 −𝐦) }

 

ℛ𝑛
𝑑𝐱 = ∫ exp {−

1

2
 𝐲𝑇𝕆𝑇⅀−1𝕆𝐲}𝑑𝐲 =

 

ℛ𝑛
 

 

= ∫ ⋯∫ exp {−
1

2
 ∑

𝑦𝑖
2

𝜆𝑖

𝑛

𝑖=1

}  𝑑𝑦1⋯𝑑𝑦𝑛 =
 

ℛ

 

ℛ

 

 

=∏∫ exp{−
1

2
 
𝑦𝑖
2

𝜆𝑖
}  𝑑𝑦𝑖 = (2𝜋)

𝑛 2⁄ ∏(𝜆𝑖)
1 2⁄ ,

𝑛

𝑖=1

 

ℛ

𝑛

𝑖=1

 

և, քանի որ 

∏𝜆𝑖 = |𝚲| = |⅀|,

𝑛

𝑖=1

 

ապա 1-ին պայմանն ապացուցվեց:  

 2. Քանի որ 𝕆𝐘 = 𝐗 −𝐦, ապա 𝐘 պատահական վեկտորի խտության 

ֆունկցիան կլինի հավասար՝ 

𝑔(𝐲) = 𝑓(𝐱(𝐲))|𝒥| =∏(2𝜋𝜆𝑖)
−1 2⁄ exp {−

1

2
 
𝑦𝑖
2

𝜆𝑖
 } ,   𝐲 = ‖𝑦1, … , 𝑦𝑛‖

𝑇:

𝑛

𝑖=1
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Հետևաբար, 𝑌𝑖  ~ ℕ(0, 𝜆𝑖)-երը անկախ նորմալ բաշխված պատահական 

մեծություններ են: Այստեղից հետևում է, որ 

E(𝐘) = 𝟎, 𝕍(𝐘) = E(𝐘𝐘𝑇) = 𝚲: 

Այնպես որ` 

E(𝐗 −𝐦) = E(𝕆𝐘) = 𝕆E(𝐘) = 𝟎  և  E(𝐗) = 𝐦: 

Մյուս կողմից` 

𝕍(𝐗) = E[(𝐗 −𝐦)(𝐗 −𝐦)𝑇] = E[𝕆𝐘𝐘𝑇𝕆𝑇] = 𝕆[E(𝐘𝐘𝑇)]𝕆𝑇 = 
 

= 𝕆𝚲𝕆𝑇 = 𝕆(𝕆𝑇⅀ 𝕆)𝕆𝑇 = ⅀: 

3. Դիտարկենք  𝜒𝑛
2  = (𝐗 −𝐦)𝑇⅀−𝟏(𝐗 −𝐦) պատահական մեծությու-

նը, որը ձևափոխելով կբերվի հետևյալ տեսքի` 

 

 𝜒𝑛
2 = 𝐘𝑇𝕆𝑇⅀−𝟏 𝕆𝐘 = 𝐘𝑇𝚲−1𝐘 =∑(

𝑌𝑖
2

𝜆𝑖
)

𝑛

𝒊=𝟏

=∑𝜀𝑖
2

𝑛

𝑖=1

, 

 

որտեղ 𝜀𝑖  ~ ℕ(0,1)-ը ստանդարտ նորմալ բաշխում ունեցող անկախ պա-

տահական մեծություններ են (տե՛ս կետ 2-ը): Այսպիսով,  𝜒𝑛
2 պատահա-

կան մեծությունն ունի  𝒏 ազատության աստիճաններով χ2 բաշ-

խում` 𝜒𝑛
2 ~ ℍ2(𝑛) (տե՛ս [15], թեորեմ 2.2):  

        Հետևանք Հ. 35: Եթե  𝑋𝑖 ~ ℕ(𝑚𝑖 , 𝜎
2), 𝑖 = 1,… , 𝑛 միևնույն ցրվածքով 

նորմալ բաշխված անկախ պատահական մեծություններ են, ապա  

𝐗 = ‖𝑋𝟏, … , 𝑋𝑛‖
𝑻 ~ ℕ𝑛(𝐦, 𝜎

2𝔼𝑛)  

վեկտորն ունի բազմաչափ նորմալ բաշխում, որտեղ  𝐦 = ‖𝑚1, … ,𝑚𝑛‖
𝑇 : 

Ա պ ա ց ու ց ու մ: Ըստ պայմանի, ունենք (𝐱 = ‖𝑥1, … , 𝑥𝑛‖
𝑇)` 

 

𝑓(𝐱) =∏𝑓𝑖(𝑥𝑖) = (2𝜋𝜎
2)−𝑛 2⁄

𝑛

𝑖=1

exp {−
1

2𝜎2
 ∑(𝑥𝑖 −𝑚𝑖)

2

𝑛

𝑖=1

} =  

 

= (2𝜋)−𝑛 2⁄ |𝜎2𝔼𝑛|
−𝑛 2⁄  exp {−

1

2
 (𝐱 −𝐦)𝑇(𝜎2𝔼𝑛)

−1(𝐱 −𝐦)}:  
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        Թեորեմ Հ. 36: 𝐗 ~ ℕ𝑛(𝐦,⅀) վեկտորի 𝜑𝐗(𝐭) = E(e
𝑖𝐭𝑇𝐗) բնութագրիչ 

ֆունկցիան հավասար է 
 

𝜑𝐗(𝐭) = exp {𝑖𝐭
𝑇𝐦−

1

2
 𝐭𝑇⅀ 𝐭} = exp {𝒊∑𝑡𝑗𝑚𝑗 −

 

 

1

2
 ∑𝜎𝑗𝑘𝑡𝑗𝑡𝑘

 

 

}, 

 

որտեղ t = ‖𝑡𝟏, … , 𝑡𝑛‖
𝑇 , 𝐦 = ‖𝑚1, … ,𝑚𝑛‖

𝑇 , ⅀ = ‖𝜎𝑗𝑘‖𝑗,𝑘=1
𝑛

, իսկ 𝒊-ն կեղծ 

միավորն է : 

Ա պ ա ց ու ց ու մ: Գտնենք M𝐗(𝐭) = E(e
𝐭𝑇𝐗) մոմենտների ծնորդ 

ֆունկցիան, որտեղից այնուհետև կգտնենք 𝜑𝐗(𝐭) = M𝐗(𝑖𝐭) բնութագրիչ 

ֆունկցիան: Դիտարկենք 𝐘 = 𝐗 −𝐦 ~ ℕ𝑛(𝟎,⅀) պատահական վեկտորը և 

գտնենք  𝐗  վեկտորի համար մոմենտների ծնորդ ֆունկցիան` 

 

M𝐗(𝐭) = E[exp{𝐭
𝑇𝐗}] = E[exp{𝐭𝑇(𝐘 +𝐦)}] = 

 

= (2𝜋)−𝑛 2⁄ |⅀|−1 2⁄ ∫exp {−
1

2
 𝐲𝑇⅀−1𝐲 + 𝐭𝑇(𝐲 +𝐦)} 𝑑𝐲 =

 

ℛ𝑛

 

 

 

= (2𝜋)−𝑛 2⁄ |⅀|−1 2⁄ × 
 

 

× exp {𝐭𝑇𝐦+
1

2
 𝐭𝑇⅀ 𝐭}∫ exp {−

1

2
 (𝐲 − ⅀𝐭)𝑇⅀−1(𝐲 − ⅀𝐭)} 𝑑𝐲 =

 

ℛ𝑛
 

 

 

= exp {𝐭𝑇𝐦+
1

2
 𝐭𝑇⅀ 𝐭} , 

քանի որ  

(2𝜋)−𝑛 2⁄ |⅀|−1 2⁄ exp {−
1

2
 (𝐲 − ⅀𝐭)𝑇⅀−1(𝐲 − ⅀𝐭)} 

 

 

ֆունկցիան ℕ𝑛(⅀𝐭,⅀) բաշխում ունեցող պատահական մեծության խտու-

թյան ֆունկցիան է: Բացի այդ, նկատենք, որ 
 

−
1

2
 (𝐲 − ⅀𝐭)𝑇⅀−1(𝐲 − ⅀𝐭) = 
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= −
1

2
 𝐲𝑇⅀−1𝐲 +

1

2
 𝐲𝑇⅀−1⅀ 𝐭 +

1

2
 𝐭𝑇⅀𝑇⅀−1𝐲 −

1

2
 𝐭𝑇⅀𝑇⅀−1⅀ 𝐭 = 

 

= −
1

2
 𝐲𝑇⅀−1𝐲 + 𝐭𝑇𝐲 −

1

2
 𝐭𝑇⅀ 𝐭 ∶ 

 

 

Այսպիսով` 

𝜑𝐗(𝐭) = M𝐗(𝑖𝐭) = exp {𝑖𝐭
𝑇𝐦−

1

2
 𝐭𝑇⅀ 𝐭} ∶ 

 

        Լեմմա Հ. 37: Դիցուք 𝐗 ~ ℕ𝑛(𝐦,⅀), իսկ ℂ-ն 𝑝 × 𝑛 -չափանի մատրից է 

(𝑝 < 𝑛), որի համար՝  rank (ℂ) = 𝑝: Այդ դեպքում`` 

ℂ𝐗 ~ ℕ𝑝(ℂ𝐦,ℂ⅀ℂ
𝑇):  

Ա պ ա ց ու ց ու մ: Դիտարկենք 𝐘 = ℂ𝐗 վեկտորը: Գտնենք 𝐘-ի 

մոմենտների ծնորդ ֆունկցիան` 

M𝐘(𝐭) = E[exp{𝐭
𝑇𝐘}] = E[exp{𝐭𝑇ℂ𝐗}] = E[exp{𝐬𝑇𝐗}] = 

 

= exp {𝐬𝑇𝐦+
1

2
 𝐬𝑇⅀ 𝐬}= exp {𝐭𝑇(ℂ𝐦) +

1

2
 𝐭𝑇(ℂ⅀ℂ𝑇) 𝐭} , 

որտեղ 𝐭𝑇 ∈ ℛ𝑝, իսկ 𝐬𝑇 = 𝐭𝑇ℂ-ն 𝑛 -չափանի տող վեկտոր է: Այստեղից, եթե 

ցույց տանք, որ ℂ⅀ℂ𝑇 > 0 դրական որոշյալ մատրից է, ապա կեզրակաց-

նենք, որ 𝐘 ~ ℕ𝑝(ℂ𝐦,ℂ⅀ℂ
𝑇): Քանի որ ⅀ > 0 դրական որոշյալ մատրից է, 

ապա, համաձայն Հ. 12-ի հատկություն 3-ի, գոյություն ունի չվերասերված 

𝑛 × 𝑛-չափանի ℝ մատրից, այնպիսին, որ ⅀ = ℝℝ𝑇: Այստեղից`  
 

 

ℂ⅀ℂ𝑇 = ℂℝ(ℂℝ)𝑇 ∶= 𝔹𝔹𝑇 , 
 

որտեղ (տե՛ս Հ. 5-ի հատկություն 1) 
 

rank (𝔹) = rank (ℂℝ) = rank (ℂ) = 𝑝 ∶ 

Այսպիսով (տե՛ս Հ. 5-ի հատկություն 3-ը), ունենք 

rank (𝔹𝔹𝑇) = rank (𝔹) = 𝑝, 

այսինքն՝ 𝔹𝔹𝑇 = ℂ⅀ℂ𝑇 մատրիցը (տե՛ս Հ. 12 -ի հատկություն 5) դրական 

որոշյալ է:   
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      Թեորեմ Հ. 38: Որպեսզի  𝐗 = ‖𝑋𝟏, … , 𝑋𝑛‖
𝑇վեկտորն ունենա բազմաչափ 

նորմալ բաշխում, անհրաժեշտ է և բավարար, որ կամայական 𝐜 ∈ ℛ𝑛 

վեկտորի համար 𝐜𝑇𝐗 (𝐜 ≠ 𝟎) պատահական մեծությունը լինի բաշխված 

նորմալ օրենքով: 

Ա պ ա ց ու ց ու մ: Դիցուք 𝐗 վեկտորի համար E(𝐗) = 𝐦, 𝕍(𝐗) = ⅀: 

Եթե կամայական 𝐜 ∈ ℛ𝑛-ից վեկտորի համար 𝑌 = 𝐜𝑇𝐗 պատահական 

մեծությունը բաշխված է նորմալ օրենքով, ապա 

E(𝑌) = 𝐜𝑇𝐦, var (𝑌) = 𝐜𝑇⅀ 𝐜 , 

այնպես որ, 𝑌 ~ ℕ (𝐜
𝑇𝐦,𝐜𝑇⅀ 𝐜): Այստեղից 𝑌 պատահական մեծության 

մոմենտների ծնորդ ֆունկցիան կլինի 

M𝑌(𝑡) = E[exp{𝑡𝑌}]= exp {𝑡(𝐜
𝑇𝐦) +

1

2
 (𝐜𝑇⅀ 𝐜) 𝑡𝟐} , 

բոլոր 𝑡 ∈ ℛ -ից: Վերցնելով 𝑡 = 1՝ կստանանք` 

E[exp{𝐜𝑇𝑿}]= exp {𝐜𝑇𝐦+
1

2
 (𝐜𝑇⅀ 𝐜) } = M𝐗(𝐜), 

որտեղից՝ 𝐗 ~ ℕ𝑛(𝐦,⅀): Նկատենք, որ var (𝑌) = 𝐜𝑇⅀ 𝐜 > 0, եթե 𝐜 ≠ 0, 

ուստի  ⅀-ն դրական որոշյալ մատրից է: 

Ընդհակառակն, եթե 𝐗 ~ ℕ𝑛(𝐦,⅀), ապա, համաձայն լեմմա Հ. 37-ի, 

𝑌 = 𝐜𝑇𝐗 ~ ℕ (𝐜
𝑇𝐦, 𝐜𝑇⅀ 𝐜),  

𝐜𝑇 վեկտորի ռանգը` rank (𝐜𝑇) = 1:   

Հատկություններ 

        Թեորեմ Հ. 39: 𝐗 ~ ℕ𝑛(𝐦,⅀) վեկտորի ցանկացած ենթավեկտոր 

նույնպես ունի բազմաչափ նորմալ բաշխում: 

Ա պ ա ց ու ց ու մ: Չխախտելով ընդհանրությունը՝ որպես 𝐗 վեկտորի 

ենթավեկտոր վերցնենք հետևյալ 𝑝 − չափանի (𝑝 < 𝑛)  𝐘 = ‖𝑋𝟏, … , 𝑋𝑝‖
𝑇
 

վեկտորը: Ներկայացնենք այն 

𝐘 = ‖𝔼𝑝𝟎𝑝×(𝑛−𝑝)‖ 𝐗 = ℂ𝐗 



Որոշ գաղափարներ հավանականությունների տեսությունից 

303 

տեսքով, որտեղ rank (ℂ) = 𝑝: Այստեղից, համաձայն լեմմա Հ. 37-ի՝ 

𝐘 ~ ℕ𝑝(ℂ𝐦,ℂ⅀ℂ
𝑇), 

որտեղ ℂ𝐦 = ‖𝑚1, … ,𝑚𝑝‖
𝑇
, իսկ ℂ⅀ℂ𝑇 = ⅀𝑝:    

       Հետևանք Հ. 40: Եթե  𝐗 = ‖𝑋𝟏, … , 𝑋𝑛‖
𝑇~ ℕ𝑛(𝐦,⅀), ապա  𝑋𝑖~ ℕ(𝑚𝑖, 𝜎𝑖

2), 

𝑖 = 1,… , 𝑛: 

Դիտողություն:  𝐗 = ‖𝑋𝟏, … , 𝑋𝑛‖
𝑇 վեկտորի 𝑋𝑖~ ℕ(𝑚𝑖 , 𝜎𝑖

2) անդամների  

նորմալ բաշխվածությունից, չի հետևում, որ 𝐗 վեկտորն ունի ℕ𝑛(𝐦,⅀) 

բազմաչափ նորմալ բաշխում: Դա տեղի կունենա միայն այն դեպքում, երբ 

𝐜𝑇𝐗 պատահական մեծությունները կամայական 𝐜 ∈ ℛ𝑛-ից լինեն նորմալ 

բաշխված:  

       Թեորեմ Հ. 41: Դիցուք  𝐗 ~ ℕ𝑛(𝐦,⅀): Դիտարկենք 𝐗 վեկտորի հետևյալ 

տրոհումը` 𝐗 = ‖𝐗
1

𝐗2
‖, որտեղ  𝐗1 ∈ ℛ𝑝,    𝐗2 ∈ ℛ𝑛−𝑝 : Որպեսզի  𝐗1 և  𝐗2 

վեկտորները լինեն անկախ, անհրաժեշտ է և բավարար, որ  𝕍( 𝐗1, 𝐗2) =

= 𝟎𝑝×(𝑛−𝑝): 

Ա պ ա ց ու ց ու մ: Եթե 𝐗1 և 𝐗2 վեկտորներն անկախ են, ապա անկախ 

են դրանց կամայական 𝑋𝑖
1 և 𝑋𝑗

2, 𝑖 = 1,… , 𝑝, 𝑗 = 𝑝 + 1,… , 𝑛 տարրերի 

զույգերը: Այնպես որ՝ 

cov (𝑋𝑖
1, 𝑋𝑗

2) = E[(𝑋𝑖
1 −𝑚𝑖

1)(𝑋𝑗
2 −𝑚𝑗

2)] = E(𝑋𝑖
1 −𝑚𝑖

𝑖) E(𝑋𝑗
2 −𝑚𝑗

2) = 0, 

որտեղ  𝑚𝑖
1 = E(𝑋𝑖

1), 𝑚𝑗
2 = E(𝑋𝑗

2), այսինքն`  

𝕍( 𝐗1, 𝐗2) = E[(𝐗1 −𝐦1)(𝐗2 −𝐦2)𝑇] = 𝟎𝑝×(𝑛−𝑝): 

Ընդհակառակն, դիցուք  𝕍( 𝐗1, 𝐗2) = 𝟎𝑝×(𝑛−𝑝): Նշանակենք`  
 

⅀𝑖𝑖 = 𝕍(𝐗
𝑖) = E [(𝐗𝑖 −𝐦𝑖)(𝐗𝑖 −𝐦𝑖)

𝑇
] , 𝑖 = 1,2,  

 

⅀12 = 𝕍( 𝐗
1, 𝐗2) = 𝟎𝑝×(𝑛−𝑝), ⅀21 = 𝕍( 𝐗

2, 𝐗1) = 𝟎(𝑛−𝑝)×𝑝: 

𝐗  վեկտորի կովարիացիոն մատրիցը կներկայացվի հետևյալ ձևով` 
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⅀ = ‖
⅀11 ⅀12
⅀21 ⅀22

‖ = ‖
⅀11 𝟎𝑝×(𝑛−𝑝)

𝟎(𝑛−𝑝)×𝑝 ⅀22
‖ ։ 

 

 

Հեշտ է տեսնել (տե՛ս թեորեմ Հ. 27), որ  
 

⅀−1 = ‖
⅀11
−1 𝟎𝑝×(𝑛−𝑝)

𝟎(𝑛−𝑝)×𝑝 ⅀22
−1 ‖   և  |⅀| = |⅀11||⅀22| ∶ 

 

Այժմ դիտարկենք հետևյալ ներկայացումը` 

(𝐗 −𝐦)𝑇⅀−𝟏(𝐗 −𝐦) =∑(𝐗𝑖 −𝐦𝑖)
𝑇
⅀𝑖𝑖
−1(𝐗𝑖 −𝐦𝑖) ∶= 𝑄1 + 𝑄2 ∶

2

𝑖=1

 

Այսպիսով, 𝐗 վեկտորի խտության ֆունկցիան կբերվի հետևյալ տեսքի` 

𝑓(𝐱) = (2𝜋)−𝑛 2⁄ |⅀|−1 2⁄ exp {−
1

2
 (𝑄1 + 𝑄2)} = 

 

= (2𝜋)−(1 2⁄ )𝑝|⅀11|
−1 2⁄ exp {−

1

2
 𝑄1} × 

 

 × (2𝜋)−(1 2⁄ )(𝑛−𝑝)|⅀22|
−1 2⁄ exp {−

1

2
 𝑄2} =𝑓1(𝐱1)𝑓2(𝐱2):   

     

       Հետևանք Հ. 42: Եթե 𝐗 = ‖
𝐗1

⋮
𝐗𝑘
‖~ ℕ𝑛(𝐦,⅀), 𝐗

𝑖-ն 𝑛𝑖 -չափանի վեկտոր է, 

և 𝕍( 𝐗𝑖, 𝐗𝑗) = 𝟎𝑛𝑖×𝑛𝑗 , 𝑖, 𝑗 = 1,… , 𝑘, 𝑖 ≠ 𝑗, ∑𝑛𝑖 = 𝑛, ապա 𝐗𝑖 վեկտորները 

համախմբովի անկախ են: Մասնավորապես, եթե 𝐗 = ‖𝑋𝟏, … , 𝑋𝑛‖
𝑇 ~  

~ ℕ𝑛(𝐦,⅀) վեկտորի 𝑋𝒊, 𝑖 = 1,… , 𝑛 անդամները չկորելյացված են, 

cov (𝑋𝒊, 𝑋𝑗) = 0, 𝑖 ≠ 𝑗, ապա 𝑋𝒊 պատահական մեծություններն անկախ են:  

 
 

      Թեորեմ Հ. 43:  Դիցուք  𝛆 ~ ℕ𝑛(𝟎, 𝔼𝑛):  Դիտարկենք 

𝐗 = 𝔸𝛆 + 𝐚  և  𝐘 = 𝔹𝛆 + 𝐛 

պատահական վեկտորները, որտեղ 𝔸 -ն ` 𝑝 × 𝑛 -չափանի մատրից է, 𝔹-

ն` 𝑞 × 𝑛 -չափանի մատրից, 𝐚 ∈ ℛ𝑝, 𝐛 ∈ ℛ𝑞` կամայական վեկտորներ: 

Այդ դեպքում` 𝕍(𝐗, 𝐘) = 𝔸𝔹𝑻 ∶ Մասնավորապես, 𝐗 և 𝐘 վեկտորներն 

անկախ են այն և միայն այն դեպքում, երբ  𝔸𝔹𝑻 = 𝟎𝑝×𝑞 : 
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Ա պ ա ց ու ց ու մ: Համաձայն Հ. 29 հատկություն 1-ի՝ ունենք` 

𝕍(𝐗, 𝐘) = 𝔸𝕍(𝛆)𝔹𝑻 = 𝔸𝔹𝑻 ∶ 

Այստեղից, օգտվելով թեորեմ Հ. 41-ից, կստանանք անկախության համար 

անհրաժեշտ և բավարար 𝔸𝔹𝑻 = 𝟎𝑝×𝑞 պայմանը:          

       Թեորեմ Հ. 44: Դիցուք 𝐗 ~ ℕ𝑛(𝐦,⅀): Այդ դեպքում այն ներկայացվում է 

հետևյալ ձևով՝ 

𝐗 = (𝕆𝚲1 2⁄ )𝛆 +𝐦, 

որտեղ 𝛆  ~ ℕ𝑛(𝟎,  𝔼𝑛), 𝕆-ն օրթոգոնալ մատրից է, 𝚲 = 𝕆𝑇⅀ 𝕆 -ն՝ անկյու-

նագծային մատրից, որի 𝜆𝑖 տարրերը ⅀ մատրիցի սեփական արժեքներն 

են (համեմատել 𝐗 ~ ℕ(𝑚, 𝜎2) պատահական մեծության 𝐗 = 𝜎𝜀 +𝑚 ներ-

կայացման հետ, որտեղ  𝜀 ~ℕ(0,1)):  

Ա պ ա ց ու ց ու մ: Քանի որ ⅀ կովարիացիոն մատրիցը համաչափ է և 

դրական որոշյալ, ապա դրա բոլոր սեփական արժեքները դրական են` 

 𝜆𝑖 > 0, 𝑖 = 1,… . 𝑛, և գոյություն ունի (տե՛ս պնդում Հ. 9) օրթոգոնալ 𝕆 

մատրից այնպիսին, որ 𝚲 = 𝕆𝑇⅀ 𝕆, որտեղ 𝚲 -ն 𝜆𝑖 տարրերով կազմված 

անկյունագծային մատրից է:  

Դիցուք 𝛆  ~  ℕ𝑛(𝟎,  𝔼𝑛) ստանդարտ նորմալ բաշխված պատահական 

վեկտոր է: Դիտարկենք 𝐘 = (𝕆𝚲1 2⁄ )𝛆 +  𝐦 վեկտորը, որտեղ 𝚲1 2⁄  -ը 𝜆𝑖
1 2⁄ , 

𝑖 = 1,… , 𝑛 տարրերով կազմված անկյունագծային մատրից է: Պարզ է, որ Y 

-ը նորմալ  բաշխում ունեցող պատահական վեկտոր է, ընդ որում`  
 

E(𝐘) = (𝕆𝚲1 2⁄ ) E(𝛆) +𝐦 = 𝐦, 
 

𝕍(𝐘) = E[(𝐘 −𝐦)(𝐘 −𝐦)𝑇] = E [(𝕆𝚲1 2⁄ )𝛆𝛆𝑇 ((𝕆𝚲1 2⁄ ))
𝑇
]

= 𝕆𝚲1 2⁄ 𝔼(𝛆𝛆𝑇)𝚲1 2⁄ 𝕆𝑇 =  𝕆𝚲𝕆𝑇 = ⅀ ∶ 
 

Այնպես որ՝  Y ~ ℕ𝑛(𝐦,⅀)  և  𝐘 = 𝐗 (ըստ բաշխման):      

        Թեորեմ Հ. 45: Եթե 𝛆  ~  ℕ𝑛(𝟎,  𝔼𝒏) ստանդարտ նորմալ պատահական 

վեկտոր է, իսկ 𝕄-ը՝ 𝑛 × 𝑛 -չափանի պրոեկցիոն մատրից, որի համար 

rank (𝕄) = 𝑟, ապա 𝜒𝑟
2 = 𝛆𝑇𝕄 𝛆  պատահական մեծությունն ունի 𝑟 

ազատության աստիճաններով  𝝌𝟐 բաշխում ՝ 𝜒𝑟
2 ~ ℍ2(𝑟): 
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Ա պ ա ց ու ց ու մ: Քանի որ 𝕄 մատրիցը համաչափ է, դիտարկենք 

դրա  𝕄 = 𝕆𝚲𝕆𝑇 վերլուծությունը, որտեղ 𝕆-ն օրթոգոնալ մատրից է, իսկ 

𝚲-ն՝ անկյունագծային մատրից, որի տարրերը 0-ներ են և 1-եր (տե՛ս 

պնդում Հ. 14), ընդ որում՝ 1 - երի թիվը հավասար է 𝕄 մատրիցի ռանգին 

(այսինքն՝ 𝑟-ին):  

Դիտարկենք հետևյալ պատահական մեծությունը՝ 

𝜒𝑟
2 = 𝛆 

𝑇𝕄 𝛆 = 𝛆 
𝑇(𝕆𝚲𝕆𝑇)𝛆 = (𝛆 

𝑇𝕆)𝚲(𝛆 
𝑇𝕆)𝑇 = 𝛈𝑇𝚲 𝛈,  

որտեղ 𝛈 = 𝕆𝑇𝛆  ~ ℕ𝑛(𝟎,𝕍(𝛈)): Հեշտ է տեսնել, որ 𝕍(𝛈) կովարիացիոն 

մատրիցը հավասար է՝ 

𝕍(𝛈) = E [(𝛈 − E(𝛈))(𝛈 − E(𝛈))
𝑇
] = E(𝛈𝛈𝑇) = E[(𝕆𝑇𝛆 )(𝛆 

𝑇𝕆)] = 

= 𝕆𝑇E(𝜺 𝜺 
𝑇)𝕆 = 𝕆𝑇𝔼𝑛𝕆 = 𝕆

𝑇𝕆 = 𝔼𝑛: 

Այսպիսով, 𝛈 ~  ℕ𝑛(𝟎, 𝔼𝑛) ստանդարտ նորմալ պատահական վեկտոր է, 

որի անդամները չկորելյացված են, ուստի և՝ անկախ (տե՛ս հետևանք  

Հ. 42), հետևաբար՝  

𝜒𝑟
2 = 𝛈𝑇𝚲 𝛈 = ∑𝜂𝑖𝑘

2

𝑟

𝑘=1

 

պատահական մեծությունն ունի 𝒓 ազատության աստիճաններով 𝝌𝟐 

բաշխում :           
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Բաշխումների աղյուսակներ 

 

Ա 1.  ℕ(𝟎, 𝟏) − ստանդարտ նորմալ բաշխում:  

 𝚽(𝒙) =
𝟏

√𝟐𝝅
∫𝒆−

𝒖𝟐

𝟐 𝒅𝒖

𝑥

−∞

  ֆունկցիայի արժեքները: 

𝒙 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 

0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359 

.1 .5398 .5438 .5478   .5517 .5557   .5596 .5636 .5675 .5714 .5753 

.2 .5793 .5832 .5871   .5910 .5948 .5987 .6026 .6064 .6103 .6141 

.3 .6179 .6217 .6255 .6293 .6331 .6368 .6406 .6443 .6480 .6517 

.4 .6554 .6591 .6628 .6664 .6700 .6736 .6772 .6808 .6844 .6879 

.5 .6915 .6950 .6985 .7019 .7054 .7088 .7123 .7157 .7190 .7224 

.6 .7257 .7291 .7324 .7357 .7389 .7422 .7454 .7486 .7517 .7549 

.7 .7580 .7611 .7642 .7673 .7704 .7734 .7764 .7794 .7823 .7852 

.8 .7881 .7910 .7939 .7967 .7995 .8023 .8051 .8078 .8106 .8133 

.9 .8159 .8186 .8212 .8238 .8264 .8289 .8315 .8340 .8365 .8389 

1.0 .8413 .8438 .8461 .8485 .8508 .8531 .8554 .8577 .8599 .8621 

.1 .8643 .8665 .8686 .8708 .8729 .8749 .8770 .8790 .8810 .8830 

.2 .8849 .8869 .8888 .8907 .8925 .8944 .8962 .8980 .8997 .9015 

.3 .9032 .9049 .9066 .9082 .9099 .9115 .9131 .9147 .9162 .9177 

.4 .9192 .9207 .9222 .9236 .9251 .9265 .9278 .9292 .9306 .9319 

.5 .9332 .9345 .9357 .9370 .9382 .9394 .9406 .9418 .9429 .9441 

.6 .9452 .9463 .9474 .9484 .9495 .9505 .9515 .9525 .9535 .9545 

.7 .9554 .9564 .9573 .9582 .9591 .9599 .9608 .9616 .9625 .9633 

.8 .9641 .9649 .9656 .9664 .9671 .9678 .9686 .9693 .9699 .9706 

.9 .9713 .9719 .9726 .9732 .9738 .9744 .9750 .9756 .9761 .9767 

2.0 .9772 .9778 .9783 .9788 .9793 .9798 .9803 .9808 .9812 .9817 

.1 .9821 .9826 .9830 .9834 .9838 .9842   .9846 .9850 .9854 .9857 

.2 .9861 .9864 .9868 .9871 .9875 .9878 .9881 .9884 .9887 .9890 

.3 .9893 .9896 .9898 .9901 .9904 .9906 .9909 .9911 .9913 .9916 

.4 .9918 .9920 .9922 .9925 .9927 .9929 .9931 .9932   .9934 .9936 

  .5 .9938 .9940 .9941 .9943 .9945 .9946 .9948 .9949 .9951 .9952 

.6 .9953 .9955 .9956 .9957 .9959 .9960 .9961 .9962 .9963 .9964 

.7 .9965 .9966 .9967 .9968 .9969 .9970 .9971 .9972 .9973 .9974 

.8 .9974 .9975 .9976 .9977 .9977 .9978 .9979 .9979 .9980 .9981 

.9 .9981 .9982 .9982 .9983 .9984 .9984 .9985 .9985 .9986 .9986 

3.0 .9987 .9987 .9987 .9988 .9988 .9989 .9989 .9989 .9990 .9990 

.1 .9990 .9991 .9991 .9991   .9992 .9992 .9992 .9992 .9993 .9993 

.2 .9993 .9993 .9994 .9994 .9994 .9994 .9994 .9995 .9995 .9995 

.3 .9995 .9995 .9995 .9996 .9996 .9996 .9996 .9996 .9996 .9997 

.4 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9998 
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Ա 2.  ℕ(𝟎, 𝟏)  ստանդարտ նորմալ բաշխում:  

 

           𝒛𝜶 կրիտիկական արժեքները՝ 

 𝟏 −  𝚽(𝒛𝜶) =
𝟏

√𝟐𝝅
∫ 𝒆−

𝒖𝟐

𝟐 𝒅𝒖 = 𝜶,   𝟎 < 𝜶 < 𝟏 ∶ 

∞

𝑧𝛼

 

𝜶 0.001 0.005 0.01 0.02 0.025 0.03 0.05 0.075 0.1 0.2 0.25 

𝒛𝜶 3.090 2.576 2.326 2.054 1.960 1.881 1.645 1.440 1.282 0.842 0.675 

 

              𝒛𝜶 𝟐⁄  կրիտիկական արժեքները՝ 

𝟏

√𝟐𝝅
∫ 𝒆−

𝒖𝟐

𝟐 𝒅𝒖 = 𝜸 = 𝟏 − 𝜶,   𝟎 < 𝜶 < 𝟏  ( 𝚽(𝒛𝜶 𝟐⁄ ) = 𝟏 −
𝜶

𝟐
 ) ∶ 

 𝒛𝜶 𝟐⁄

− 𝒛𝜶 𝟐⁄

 

 

𝟏 − 𝜶 0.999 0.995 0.99 0.975 0.95 0.9 0.75 

𝟏𝟎𝟎 𝜶 % 0.1 0.5 1 2.5 5 10 25 

𝜶 𝟐⁄  0.0005 0.0025 0.005 0.0125 0.025 0.05 0.125 

𝒛𝜶 𝟐⁄  3.2905 2.81 2.576 2.24 1.96 1.645 1.15 
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Ա 3.   𝝌𝟐 բաշխում:  𝝌𝜶
𝟐(𝒏)  կրիտիկական արժեքները`   

              
𝟏

𝟐𝒏 𝟐⁄  𝚪(𝒏 𝟐⁄ )
∫ 𝒙𝒏 𝟐⁄  −𝟏𝒆−𝒙 𝟐⁄ 𝒅𝒙

∞

𝝌𝜶
𝟐(𝒏)

= 𝜶,      𝟎 < 𝜶 < 𝟏:  

     𝜶    0.995     0.99      0.975      0.95       0.90       0.10       0.05      0.025      0.01      0.005              
   𝒏 
   1        0.000     0.000     0.001     0.004     0.016     2.706     3.843     5.025     6.637     7.882  

   2        0.010     0.020     0.051     0.103     0.211     4.605     5.992     7.378     9.210   10.597 

   3         0.072     0.115     0.216     0.352     0.584     6.251     7.815     9.348    11.344   12.837 

   4         0.207     0.297     0.484     0.711     1.064     7.779     9.488   11.143    13.277   14.860 

   5         0.412     0.554     0.831     1.145     1.610     9.236   11.070   12.832    15.085   16.748 

   6         0.676     0.872     1.237     1.635     2.204   10.645   12.592   14.440    16.812   18.548 

   7         0.989     1.239     1.690     2.167     2.833   12.017   14.067   16.012    18.474   20.276 

   8         1.344     1.646     2.180     2.733     3.490   13.362   15.507   17.534    20.090   21.954 

   9         1.735     2.088     2.700     3.325     4.168   14.684   16.919   19.022    21.665   23.587 

 10         2.156     2.558     3.247     3.940     4.865   15.987   18.307   20.483    23.209   25.188 

 11         2.603     3.053     3.816     4.575     5.578   17.275   19.675   21.920    24.724   26.755 

 12         3.074     3.571     4.404     5.226     6.304   18.549   21.026   23.337    26.217   28.300 

 13         3.565     4.107     5.009     5.892     7.041   19.812   22.362   24.735    27.687   29.817 

 14         4.075     4.660     5.629     6.571     7.790   21.064   23.685   26.119    29.141   31.319 

 15         4.600     5.229     6.262     7.261     8.547   22.307   24.996   27.488    30.577   32.799 

 16         5.142     5.812     6.908     7.962     9.312   23.542   26.296   28.845    32.000   34.267 

 17         5.697     6.407     7.564     8.682   10.085   24.769   27.587   30.190    33.408   35.716 

 18         6.265     7.015     8.231     9.390   10.865   25.989   28.869   31.526    34.805   37.156 

 19         6.843     7.632     8.906   10.117   11.651   27.203   30.143   32.852    36.190   38.580 

 20         7.434     8.260     9.591   10.851   12.443   28.412   31.410   34.170    37.566   39.997 

 21         8.033     8.897   10.283   11.591   13.240   29.615   32.670   35.478    38.930   41.399 

 22         8.643     9.542   10.982   12.338   14.042   30.813   33.924   36.781    40.289   42.796 

 23         9.260   10.195   11.688   13.090   14.848   32.007   35.172   38.075    41.637   44.179 

 24         9.886   10.856   12.401   13.848   15.659   33.196   36.415   39.364    42.980   45.558 

 25       10.519   11.523   13.120   14.611   16.473   34.381   37.652   40.646    44.313   46.925 

 26       11.160   12.198   13.844   15.379   17.292   35.563   38.885   41.923    45.642   48.290 

 27       11.807   12.878   14.573   16.151   18.114   36.741   40.113   43.194    46.962   49.642 

 28       12.461   13.565   15.308   16.928   18.939   37.916   41.337   44.461    48.278   50.993 

 29       13.120   14.256   16.147   17.708   19.768   39.087   42.557   45.772    49.586   52.333 

 30       13.787   14.954   16.791   18.493   20.599   40.256   43.773   46.979    50.892   53.672 

 31       14.457   15.655   17.538   19.280   21.433   41.422   44.985   48.231    52.190   55.000 

 32       15.134   16.362   18.291   20.072   22.271   42.585   46.194   49.480    53.486   56.328 

 33       15.814   17.073   19.046   20.866   23.110   43.745   47.400   50.724    54.774   57.646 

 34       16.501   17.789   19.806   21.664   23.952   44.903   48.602   51.966    56.061   58.964 

 35       17.191   18.508   20.569   22.465   24.796   46.059   49.802   53.203    57.340   60.272                                                                                                                                      
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  Ա 4. Ստյուդենտի (t- ) բաշխում:  𝒕𝜶(𝒏) կրիտիկական   

          արժեքները՝ 

              
𝚪 (
𝒏 + 𝟏
𝟐
)

√𝒏𝝅  𝚪 (
𝒏
𝟐
)
 ∫ (𝟏 +

 𝒙𝟐

𝒏
)

− 
𝒏 + 𝟏
𝟐

𝒅𝒙 = 𝜶,        𝟎 < 𝜶 < 𝟏

∞

𝒕𝜶(𝒏)

: 

              
       𝜶          0.10            0.05            0.025           0.01            0.005             0.001           0.0005       
   𝒏  
    1                3.078          6.314         12.706         31.821         63.657           318.31          636.62  

    2                1.886          2.920           4.303           6.965           9.925           22.326          31.598 

    3                1.638          2.353           3.182           4.541           5.841           10.213          12.924 

    4                1.533          2.132           2.776           3.747           4.604             7.173            8.610 

    5                1.476          2.015           2.571           3.365           4.032             5.893            6.869 

    6                1.440          1.943           2.447           3.143           3.707             5.208            5.959 

    7                1.415          1.895           2.365           2.998           3.499             4.785            5.408 

    8                1.397          1.860           2.306           2.896           3.355             4.501            5.041 

    9                1.383          1.833           2.262           2.821           3.250             4.297            4.781 

  10                1.372          1.812           2.228           2.764           3.169             4.144            4.587 

  11                1.363          1.796           2.201           2.718           3.106             4.025            4.437 

  12                1.356          1.782           2.179           2.681           3.055             3.930            4.318 

  13                1.350          1.771           2.160           2.650           3.012             3.852            4.221 

  14                1.345          1.761           2.145           2.624           2.977             3.787            4.140 

  15                1.341          1.753           2.131           2.602           2.947             3.733            4.073 

  16                1.337          1.746           2.120           2.583           2.921             3.686            4.015 

  17                1.333          1.740           2.110           2.567           2.898             3.646            3.965 

  18                1.330          1.734           2.101           2.552           2.878             3.610            3.922 

  19                1.328          1.729           2.093           2.539           2.861             3.579            3.883 

  20                1.325          1.725           2.086           2.528           2.845             3.552            3.850 

  21                1.323          1.721           2.080           2.518           2.831             3.527            3.819 

  22                1.321          1.717           2.074           2.508           2.819             3.505            3.792 

  23                1.319          1.714           2.069           2.500           2.807             3.485            3.767 

  24                1.318          1.711           2.064           2.492           2.797             3.467            3.745 

  25                1.316          1.708           2.060           2.485           2.787             3.450            3.725 

  26                1.315          1.706           2.056           2.479           2.779             3.435            3.707 

  27                1.314          1.703           2.052           2.473           2.771             3.421            3.690 

  28                1.313          1.701           2.048           2.467           2.763             3.408            3.674 

  29                1.311          1.699           2.045           2.462           2.756             3.396            3.659 

  30                1.310          1.697           2.042           2.457           2.750             3.385            3.646 

  40                1.303          1.684           2.021           2.423           2.704             3.307            3.551 

  60                1.296          1.671           2.000           2.390           2.660             3.232            3.460 

120                1.289          1.658           1.980           2.358           2.617             3.160            3.373 

  ∞                 1.282          1.645           1.960           2.326           2.576             3.090            3.291 
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Ա 5.   Ֆիշեր - Սնեդեկորի  ( 𝐅-) բաշխում:    

           𝑺𝜶(𝒎, 𝒏)  կրիտիկական արժեքները` 

        
𝚪 (
𝒎
𝟐)  𝚪 (

𝒏
𝟐)

𝚪 (
𝒎+ 𝒏
𝟐

)
 𝒎𝒎 𝟐⁄ 𝒏𝒏 𝟐⁄ ∫ 𝒙𝒎 𝟐  ⁄ − 𝟏(𝒏 +𝒎𝒙)− 

𝒎 + 𝒏
𝟐

 𝒅𝒙

∞

𝑺𝜶(𝒎,𝒏)

= 𝜶 = 𝟎. 𝟎𝟓: 

 
     𝒎     1         2          3          4          5          6          8         10         12        15        20        ∞      
  𝒏 
  1      161.4   199.5   215.7   224.6   230.2   234.0   238.9   241.9   243.9   245.9   248.0   254.0 

  2       18.51   19.00   19.16   19.25   19.30   19.33   19.37   19.40    19.41  19.41    19.45   19.50 

  3       10.13     9.55     9.28     9.12     9.01     8.94     8.85     8.79      8.74    8.70      8.66     8.53 

  4         7.71     6.94     6.59     6.39     6.26     6.16     6.04     5.96      5.91    5.86      5.80     5.63 

  5         6.61     5.79     5.41     5.19     5.05     4.93     4.82     4.74      4.68    4.62      4.56     4.36 

  6         5.99     5.14     4.76     4.53     4.39     4.28     4.15     4.06      4.00    3.94      3.87     3.67 

  7         5.59     4.74     4.35     4.12     3.97     3.87     3.73     3.64      3.57    3.51      3.44     3.23 

  8         5.32     4.46     4.07     3.84     3.69     3.58     3.44     3.35      3.28    3.22      3.15     2.93 

  9         5.12     4.26     3.86     3.63     3.48     3.37     3.23     3.14      3.07    3.01      2.94     2.71 

10         4.96     4.10     3.71     3.48     3.33     3.32     3.07     2.98      2.91    2.85      2.77     2.54 

11         4.84     3.98     3.59     3.36     3.20     3.09     2.95     2.85      2.79    2.72      2.65     2.40 

12         4.75     3.89     3.49     3.26     3.11     3.00     2.85     2.75      2.69    2.62      2.54     2.30 

13         4.67     3.81     3.41     3.18     3.03     2.92     2.77     2.67      2.60    2.53      2.46     2.21 

14         4.60     3.74     3.34     3.11     2.96     2.85     2.70     2.60      2.53    2.46      2.39     2.13 

15         4.54     3.68     3.29     3.06     2.90     2.79     2.64     2.54      2.48    2.40      2.33     2.07 

16         4.49     3.63     3.24     3.01     2.85     2.74     2.59     2.49      2.42    2.35      2.28     2.01 

17         4.45     3.59     3.20     2.96     2.81     2.70     2.55     2.45      2.38    2.31      2.23     1.96 

18         4.41     3.55     3.16     2.93     2.77     2.66     2.51     2.41      2.34    2.27      2.19     1.92 

19         4.38     3.52     3.13     2.90     2.74     2.63     2.48     2.38      2.31    2.23      2.16     1.88 

20         4.35     3.49     3.10     2.87     2.71     2.60     2.45     2.35      2.28    2.20      2.12     1.84 

21         4.32     3.47     3.07     2.84     2.68     2.57     2.42     2.32      2.25    2.18      2.10     1.81 

22         4.30     3.44     3.05     2.82     2.66     2.55     2.40     2.30      2.23    2.15      2.07     1.78 

23         4.28     3.42     3.03     2.80     2.64     2.53     2.37     2.27      2.20    2.13      2.05     1.76 

24         4.26     3.40     3.01     2.78     2.62     2.51     2.36     2.25      2.18    2.11      2.03     1.73 

25         4.24     3.39     2.99     2.76     2.60     2.49     2.34     2.24      2.16    2.09      2.01     1.71 

30         4.17     3.32     2.92     2.69     2.53     2.42     2.27     2.16      2.09    2.01      1.93     1.62 

40         4.08     3.23     2.84     2.61     2.45     2.34     2.18     2.08      2.00    1.92      1.84     1.51 

60         4.00     3.15     2.76     2.53     2.37     2.25     2.10     1.99      1.92    1.84      1.75     1.39 

120       3.92     3.07     2.68     2.45     2.29     2.18     2.02     1.91      1.83    1.75      1.66     1.25 

 ∞         3.84     3.00     2.60     2.37     2.21     2.10     1.94     1.83      1.75    1.67      1.57     1.00      

 
                                                       𝑺𝜶(𝒎, 𝒏) = 𝑺𝟏−𝜶

−𝟏 (𝒏, 𝒎) 
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  Ա 6.  [𝟎, 𝟏]  միջակայքում  հավասարաչափ  բաշխված    

              «պատահական թվեր»:  

 

       0.6548       0.1176       0.7417       0.4685       0.0950       0.5804       0.7769       0.7445 

         .8012         .4356         .3517         .7270         .8015         .4531         .8223         .7445 

         .7435         .0998         .1777         .4027         .7214         .4323         .6002         .1019 

         .6991         .6268         .0366         .2522         .9148         .3693         .6872         .0337 

         .0989         .3205         .0514         .2256         .8514         .4642         .7567         .8893 

         .3407         .2768         .5036         .6973         .6170         .6581         .3398         .8556 

         .4557         .1824         .0635         .3034         .2614         .8679         .9074         .3982 

         .0205         .1656         .9268         .6657         .4818         .7305         .3852         .4789 

         .0532         .5470         .4890         .5535         .7548         .2846         .8287         .0975 

         .0652         .9647         .7835         .8083         .4282         .6093         .5203         .4476 

         .2210         .9405         .5860         .9709         .3433         .5050         .0739         .9823 

         .5072         .5682         .4829         .4052         .4201         .5277         .5678         .5198 

         .1374         .6700         .7818         .4754         .0610         .6871         .1778         .1749 

         .3676         .6679         .5190         .3647         .6493         .2960         .9110         .6242 

         .9182         .6089         .2893         .7856         .1368         .2347         .8341         .1329 

         .6847         .9276         .8646         .1628         .3554         .9475         .0899         .2345 

         .2694         .0368         .5870         .2973         .4135         .5314         .0333         .4045 

         .8515         .7479         .5432         .9792         .6575         .5760         .0408         .8119 

         .1110         .0020         .4012         .8607         .4697         .9664         .8494         .3937 

         .1650         .5344         .8440         .2195         .2565         .4365         .1770         .8293 

         .1009         .7325         .3376         .5201         .3586         .3467         .3548         .7607 

         .3754         .2048         .0564         .8947         .4296         .2480         .5240         .3732 

         .0842         .2689         .5319         .6450         .9303         .2320         .9025         .6047 

         .9901         .9025         .2909         .3767         .0715         .3831         .1311         .6509 

         .1280         .7999         .7080         .1573         .6147         .6403         .2366         .5353 

         .8095         .9091         .1739         .2927         .4945         .6606         .5747         .1756 

         .2063         .6104         .0200         .8229         .1665         .3106         .0108         .0582 

         .1595         .3347         .6435         .0803         .3606         .8526         .9776         .0289 

         .8867         .6743         .9704         .4362         .7659         .6357         .3321         .3575 

         .9895         .1168         .7712         .1717         .6833         .7379         .6457         .5376 
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Ա 7.  ℕ(𝟎, 𝟏)  նորմալ  բաշխված «պատահական թվեր»: 

 

        − 0.486              0.856           − 0.491           − 1.983           − 1.787           − 0.261 

        − 0.256          − 0.212               0.219               0.779           − 0.105           − 0.357 

            0.065              0.415           − 0.169               0.313           − 1.339               1.827 

            1.147          − 0.121               1.096               0.181               1.041               0.535  

        − 0.199          − 0.246               1.239           − 2.574               0.279           − 2.056 

 

            1.237              1.046           − 0.508           − 1.630           − 0.146           − 0.392 

        − 1.384              0.360           − 0.992           − 0.116           − 1.698           − 2.832 

        − 0.959              0.424               0.969           − 1.141           − 1.041               0.362 

            0.731              1.377               0.983           − 1.330               1.620           − 1.040 

            0.717          − 0.873           − 1.096           − 1.396               1.047               0.089 

 

        − 1.805          − 2.008           − 1.633               0.542               0.250           − 0.166 

        − 1.186              1.180               1.114               0.882               1.265           − 0.202 

            0.658          − 1.141               1.151           − 1.210           − 0.927               0.425 

        − 0.439              0.358           − 1.939               0.891           − 0.227               0.602 

        − 1.399          − 0.230               0.385           − 0.649           − 0.577               0.237 

 

            0.032              0.079               0.199               0.208           − 1.083           − 0.219 

            0.151          − 0.376               0.159               0.272           − 0.313               0.084 

            0.290          − 0.902               2.273               0.606               0.606           − 0.747 

            0.873          − 0.437               0.041           − 0.307               0.121               0.790 

        − 0.289              0.513           − 1.132           − 2.098               0.921               0.145 

 

        − 0.291              1.122               1.119               0.004               0.768               0.079 

        − 2.828          − 0.439           − 0.792           − 1.275               0.375           − 1.656 

            0.247              1.291               0.063           − 1.793           − 0.513           − 0.344 

        − 0.584              0.541               0.484           − 0.986               0.292           − 0.521 

            0.446          − 1.661               1.045           − 1.363               1.026               2.990 

 

            0.034          − 2.127               0.665               0.084           − 0.880           − 1.473 

            0.234          − 0.656               0.340           − 0.086           − 0.158           − 0.851 

        − 0.736              1.041               0.008               0.427           − 0.831               0.210 

        − 1.206          − 0.899               0.110           − 0.528           − 0.813               1.266 

        − 0.491          − 1.114               1.297           − 1.433           − 1.345           − 0.574 
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Ա 7.  ℕ(𝟎, 𝟏) նորմալ  բաշխված «պատահական թվեր»     

          (շարունակություն) 

 

       − 1.334              1.278           − 0.568           − 0.109          − 0.515           − 0.566 

       − 0.287          − 0.144           − 0.254               0.574          − 0.451           − 1.181 

           0.161          − 0.886           − 0.921           − 0.509              1.410           − 0.518 

       − 1.346              0.193           − 1.202               0.394          − 1.045               0.843  

           1.250          − 0.199           − 0.288               1.810              1.378               0.584 

 

           2.923              0.500               0.630           − 0.537              0.782               0.060 

       − 1.190          − 0.318               0.375           − 1.941              0.247           − 0.491 

           0.192          − 0.432           − 1.420               0.489          − 1.711           − 1.186 

           0.942              1.045           − 0.151           − 0.243          − 0.430           − 0.762 

           1.216              0.733           − 0.309               0.531              0.416           − 1.541 

 

           0.499          − 0.431               1.705               1.164              0.424           − 0.444 

           0.665          − 0.135           − 0.145           − 0.498              0.593               0.658 

           0.754          − 0.732           − 0.066               1.006              0.862           − 0.885 

           0.298              1.049               1.810               2.885              0.235           − 0.628 

           1.456              2.040           − 0.124               0.196          − 0.853               0.402 

 

           0.593              0.993           − 0.106               0.116              0.484           − 1.272 

       − 1.127          − 1.407           − 1.579           − 1.616              1.458               1.262 

       − 0.142          − 0.504               0.532               1.381              0.022           − 0.281 

       − 0.023          − 0.463           − 0.809           − 0.394          − 0.538               1.707 

           0.777              0.833               0.410           − 0.349          − 1.094               0.580 

 

           0.241          − 0.957           − 1.885               0.371          − 2.830           − 0.238 

           0.022              0.525           − 0.255           − 0.702              0.953           − 0.869 

       − 0.853          − 1.865           − 0.423           − 0.973          − 1.016           − 1.726 

       − 0.501          − 0.273               0.857           − 0.465          − 1.691               0.417 

           0.439          − 0.035           − 0.260               0.120          − 9.558               0.056 
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Ա 8.  Բինոմական  բաշխում: 

𝐁(𝒙; 𝒏, 𝒑) = ∑𝑪𝒏
𝒌𝒑𝒌(𝟏 − 𝒑)𝒏 − 𝒌

𝒙−𝟏

𝒌=𝟎

  ֆունկցիայի արժեքները  (𝒙 ∈ 𝓝):  

𝒏 = 𝟓 
   𝒑  0.01   0.05   0.10   0.20   0.25   0.30   0.40   0.50   0.60   0.70   0.75   0.80   0.90   0.95   0.99           
𝒙  
1      .951   .774   .590   .328   .237   .168   .078   .031   .010   .002   .001   .000   .000   .000   .000 

2      .999   .977   .919   .737   .633   .528   .337   .188   .087   .031   .016   .007   .000   .000   .000 

3    1.000   .999   .991   .942   .896   .837   .683   .500   .317   .163   .104   .058   .009   .001   .000 

4    1.000 1.000 1.000   .993   .984   .969   .913   .812   .663   .472   .367   .263   .081   .023   .001 

5    1.000 1.000 1.000 1.000   .999   .998   .990   .969   .922   .832   .763   .672   .410   .226   .049 

𝒏 = 𝟏𝟎 

   𝒑  0.01   0.05   0.10   0.20   0.25   0.30   0.40   0.50   0.60   0.70   0.75   0.80   0.90   0.95   0.99  𝒙  

1      .904   .599   .349   .107   .056   .028   .006   .001   .000   .000   .000   .000   .000   .000   .000 

2      .996   .914   .736   .376   .244   .149   .046   .011   .002   .000   .000   .000   .000   .000   .000 

3    1.000   .988   .930   .678   .526   .383   .167   .055   .012   .002   .000   .000   .000   .000   .000 

4    1.000   .999   .987   .879   .776   .650   .382   .172   .055   .011   .004   .001   .000   .000   .000 

5    1.000 1.000   .998   .967   .922   .850   .633   .377   .166   .047   .020   .006   .000   .000   .000 

6    1.000 1.000 1.000   .994   .980   .953   .834   .623   .367   .150   .078   .033   .002   .000   .000 

7    1.000 1.000 1.000   .999   .996   .989   .945   .828   .618   .350   .224   .121   .013   .001   .000 

8    1.000 1.000 1.000 1.000 1.000   .998   .988   .945   .833   .617   .474   .322   .070   .012   .000 

9    1.000 1.000 1.000 1.000 1.000 1.000   .998   .989   .954   .851   .756   .624   .264   .086   .004 

10  1.000 1.000 1.000 1.000 1.000 1.000 1.000   .999   .994   .972   .944   .893   .651   .401   .096 

 

𝒏 = 𝟏𝟓 

   𝒑  0.01   0.05   0.10   0.20   0.25   0.30   0.40   0.50   0.60   0.70   0.75   0.80   0.90   0.95   0.99  𝒙 

1      .860   .463   .206   .035   .013   .005   .000   .000   .000   .000   .000   .000   .000   .000   .000 

2      .990   .829   .549   .167   .080   .035   .005   .000   .000   .000   .000   .000   .000   .000   .000 

3    1.000   .964   .816   .398   .236   .127   .027   .004   .000   .000   .000   .000   .000   .000   .000 

4    1.000   .995   .944   .648   .461   .297   .091   .018   .002   .000   .000   .000   .000   .000   .000 

5    1.000   .999   .987   .836   .686   .515   .217   .059   .009   .001   .000   .000   .000   .000   .000 

6    1.000 1.000   .998   .939   .832   .722   .403   .151   .034   .004   .001   .000   .000   .000   .000 

7    1.000 1.000 1.000   .982   .943   .869   .610   .304   .095   .015   .004   .001   .000   .000   .000 

8    1.000 1.000 1.000   .996   .983   .950   .787   .500   .213   .050   .017   .004   .000   .000   .000 
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Ա 8.  Բինոմական  բաշխում  (շարունակություն) 

𝒏 = 𝟏𝟓  

   𝒑  0.01   0.05   0.10   0.20   0.25   0.30   0.40   0.50   0.60   0.70   0.75   0.80   0.90   0.95   0.99  
𝒙 
9    1.000 1.000 1.000   .999   .996   .985   .905   .696   .390   .131   .057   .018   .000   .000   .000 

10  1.000 1.000 1.000 1.000   .999   .996   .966   .849   .597   .278   .148   .061   .002   .000   .000 

11  1.000 1.000 1.000 1.000 1.000   .999   .991   .941   .783   .485   .314   .164   .013   .001   .000 

12  1.000 1.000 1.000 1.000 1.000 1.000   .998   .982   .909   .703   .539   .352   .056   .005   .000 

13  1.000 1.000 1.000 1.000 1.000 1.000 1.000   .996   .973   .873   .764   .602   .184   .036   .000 

14  1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000   .995   .965   .920   .833   .451   .171   .010 

15  1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000   .995   .987   .965   .794   .537   .140 

 

𝒏 = 𝟐𝟎 

   𝒑  0.01   0.05   0.10   0.20   0.25   0.30   0.40   0.50   0.60   0.70   0.75   0.80   0.90   0.95   0.99 𝒙  

1      .818   .358   .122   .012   .003   .001   .000   .000   .000   .000   .000   .000   .000   .000   .000 

2      .983   .736   .392   .069   .024   .008   .001   .000   .000   .000    .000  .000  .000    .000   .000 

3      .999   .925   .677   .206   .091   .035   .004   .000   .000   .000   .000   .000   .000   .000   .000    

4    1.000   .984   .867   .411   .225   .107   .016   .001   .000   .000   .000   .000   .000   .000   .000   

5    1.000   .997   .957   .630   .415   .238   .051   .006   .000   .000   .000   .000   .000   .000   .000 

6    1.000 .1000   .989   .804   .617   .416   .126   .021   .002   .000   .000   .000   .000   .000   .000 

7    1.000 1.000   .998   .913   .786   .608   .250   .058   .006   .000   .000   .000   .000   .000   .000 

8    1.000 1.000 1.000   .968   .898   .772   .416   .132   .021   .001   .000   .000   .000   .000   .000 

9    1.000 1.000 1.000   .990   .959   .887   .596   .252   .057   .005   .001   .000   .000   .000   .000 

10  1.000 1.000 1.000   .997   .986   .952   .755   .412   .128   .017   .004   .001   .000   .000   .000   

11  1.000 1.000 1.000   .999   .996   .983   .872   .588   .245   .048   .014   .003   .000   .000   .000 

12  1.000 1.000 1.000 1.000   .999   .995   .943   .748   .404   .113   .041   .010   .000   .000   .000 

13  1.000 1.000 1.000 1.000 1.000   .999   .979   .868   .584   .228   .102   .032   .000   .000   .000 

14  1.000 1.000 1.000 1.000 1.000 1.000   .994   .942   .750   .392   .214   .087   .002   .000   .000 

15  1.000 1.000 1.000 1.000 1.000 1.000   .998   .979   .874   .584   .383   .196   .011   .000   .000 

16  1.000 1.000 1.000 1.000 1.000 1.000 1.000   .994   .949   .762   .585   .370   .043   .003   .000 

17  1.000 1.000 1.000 1.000 1.000 1.000 1.000   .999   .984   .893   .775   .589   .133   .016   .000 

18  1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000   .996   .965   .909   .794   .323   .075   .001 

19  1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000   .999   .992   .976   .931   .608   .264   .017 

20  1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000   .999   .997   .988   .878   .642   .182 
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Ա 9.  Պուասոնի  բաշխում:    

𝚷𝝀(𝒙) = 𝒆
− 𝝀 ∙ ∑

𝝀𝒌

𝒌!

𝒙−𝟏

𝒌=𝟎

     ֆունկցիայի արժեքները  (𝒙 ∈ 𝓝):  

   𝝀    0.1          0.2          0.3           0.4          0.5           0.6          0.7          0.8          0.9          1.0                                                                   

𝒙                                                                                                                                                                

1        .905        .819        .741         .670        .607         .549        .497        .449         .407        .368   

2        .995        .982        .963         .938        .910         .878        .844        .809         .772        .736 

3      1.000        .999        .996         .992        .986         .977        .966        .953         .937        .920 

4                     1.000      1.000         .999        .998         .997        .994        .991         .945        .981 

5                                                    1.000      1.000       1.000        .999        .999         .989        .996 

6                                                                                                  1.000      1.000         .998        .999 

7                                                                                                                                 1.000      1.000 

   𝝀    2.0        3.0        4.0         5.0        6.0         7.0        8.0        9.0        10.0        15.0        20.0                                                           
𝒙   
1        .135      .050      .018       .007      .002       .001      .000      .000       .000        .000        .000        

2        .406      .199      .092       .040      .017       .007      .003      .001       .000        .000        .000                                                                                                                                                

3        .677      .423      .238       .125      .062       .030      .014      .006       .003        .000        .000        

4        .857      .647      .433       .265      .151       .082      .042      .021       .010        .000        .000 

5        .947      .815      .629       .440      .285       .173      .100      .055       .029        .001        .000 

6        .983      .916      .785       .616      .446       .301      .191      .116       .067        .003        .000 

7        .995      .966      .889       .762      .606       .456      .313      .207       .130        .008        .000 

8        .999      .988      .949       .867      .744       .599      .453      .324       .220        .018        .001 

9      1.000      .996      .979       .932      .847       .729      .593      .456       .333        .037        .002 

10                   .999      .992       .968      .916       .830      .717      .587       .458        .070        .005 

11                 1.000      .997       .986      .957       .901      .816      .706       .583        .118        .011 

12                                .999       .995      .980       .947      .888      .803       .697        .185        .021 

13                              1.000       .998      .991       .973      .936      .876       .792        .268        .039 

14                                              .999      .996       .987      .966      .926       .864        .363        .066 

15                                            1.000      .999       .994      .983      .959       .917        .466        .105 

16                                                           .999       .998      .992      .978       .951        .568        .157 

17                                                         1.000       .999      .996      .989       .973        .664        .221 

18                                                                       1.000      .998      .995       .986        .749        .297 

19                                                                                    1.000      .999       .993        .819        .381 

20                                                                                                 1.000       .997        .875        .470 

21                                                                                                                 .998        .917        .559 

22                   .999        .947        .644 

23                1.000        .967        .721 
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Ա 9.  Պուասոնի  բաշխում (շարունակություն) 

 
   𝝀    2.0        3.0        4.0         5.0        6.0         7.0        8.0        9.0        10.0        15.0        20.0                                                           
𝒙 
24                        .981        .787 

25              .989        .843 

26                .994      .888 

27              .997        .922 

28               .998        .948 

29               .999        .966 

30              1.000        .978 

31                                .987 

32                .992 

33               .995 

34                 .997 

35                .999 

36                .999 

37              1.000  
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Ա 10.  Էռլանգի  բաշխում: 

𝐅𝟏,𝒏(𝒙) =
𝟏

𝚪(𝒏)
 ∫ 𝒕𝒏−𝟏𝒆− 𝒕𝒅𝒕     ֆունկցիայի արժեքները 

𝒙

𝟎

 (𝟏 ≤ 𝒏 ≤ 𝟏𝟎): 

     𝒏     1            2            3            4            5            6            7            8            9           10                                                                   
𝒙   
1         .632       .264       .080       .019       .004       .001       .000       .000       .000       .000 

2         .865       .594       .323       .143       .053       .017       .005       .001       .000       .000  

3         .950       .801       .577       .353       .185       .084       .034       .012       .004       .001 

4         .982       .908       .762       .567       .371       .215       .111       .051       .021       .008     

5         .993       .960       .875       .735       .560       .384       .238       .133       .068       .032     

6         .998       .983       .938       .849       .715       .554       .394       .256       .153       .084 

7         .999       .993       .970       .918       .827       .699       .550       .401       .271       .170    

8       1.000       .997       .986       .958       .900       .809       .687       .547       .407       .283 

9                       .999       .994       .979       .945       .884       .793       .676       .544       .413 

10                   1.000       .997       .990       .971       .933       .870       .780       .667       .542   

11                                   .999       .995       .985       .962       .921       .857       .768       .659 

12                                 1.000       .998       .992       .980       .954       .911       .845       .758 

13                                                .999       .996       .989       .974       .946       .900       .834 

14        1.000       .998       .994       .986       .968       .938       .891 

15                       .999       .997       .992       .982       .963       .930                                                                  
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Ա 11. Կոլմոգորովի  բաշխում: 

𝐊(𝒙) = ( ∑ (− 𝟏)𝒌 𝒆− 𝟐𝒌
𝟐𝒙𝟐

+ ∞

𝒌=− ∞

)𝟙[𝟎,+ ∞)(𝒙)    ֆունկցիայի արժեքները:  

 
𝒙          0             1             2             3             4             5             6             7            8             9           

0.2    0.0000    0.0000    0.0000    0.0000    0.0000    0.0000    0.0000    0.0000    0.0000    0.0000   

  .3      .0000      .0000      .0001      .0001      .0002      .0003      .0005      .0008      .0013      .0019  

  .4      .0028      .0040      .0055      .0074      .0097      .0126      .0160      .0200      .0247      .0300 

  .5      .0361      .0428      .0503      .0585      .0675      .0772      .0876      .0987      .1104      .1228 

  .6      .1357      .1492      .1633      .1778      .1927      .2080      .2236      .2396      .2558      .2722 

  .7      .2888      .3055      .3223      .3391      .3560      .3728      .3896      .4064      .4230      .4395 

  .8       .4559     .4720      .4880      .5038      .5194      .5347      .5498      .5646      .5791      .5933 

  .9       .6073     .6209      .6343      .6474      .6601      .6725      .6846      .6965      .7079      .7191 

1.0       .7300     .7406      .7508      .7608      .7704      .7798      .7889      .7976      .8061      .8143 

  .1       .8223     .8300      .8374      .8445      .8514      .8580      .8644      .8706      .8766      .8823 

  .2       .8878     .8930      .8981      .9030      .9077      .9121      .9164      .9206      .9245      .9283 

  .3       .9319     .9354      .9387      .9419      .9449      .9478      .9505      .9531      .9557      .9580 

  .4       .9603     .9625      .9646      .9665      .9684      .9702      .9719      .9735      .9750      .9764 

  .5      .9778      .9791      .9803      .9815      .9826      .9836      .9846      .9855      .9864      .9873 

  .6       .9881     .9888      .9895      .9902      .9908      .9914      .9919      .9924      .9929      .9934 

  .7       .9938     .9942      .9946      .9950      .9953      .9956      .9959      .9962      .9965      .9967 

  .8       .9969     .9972      .9974      .9975      .9977      .9979      .9980      .9982      .9983      .9984 

  .9       .9985     .9986      .9987      .9988      .9989      .9990      .9991      .9992      .9992      .9993 

2.0       .9993     .9994      .9994      .9995      .9995      .9996      .9996      .9996      .9997      .9997 

  .1       .9997     .9997      .9998      .9998      .9998      .9998      .9998      .9998      .9999      .9999 

  .2       .9999     .9999      .9999      .9999      .9999      .9999      .9999      .9999      .9999      .9999 

  .3     1.0000   1.0000    1.0000    1.0000    1.0000    1.0000    1.0000   1.0000     1.0000    1.0000 

  .4     1.0000   1.0000    1.0000    1.0000    1.0000    1.0000    1.0000   1.0000     1.0000    1.0000             
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Ա 12. Կոլմոգորովի բաշխում:  𝒅𝜶(𝒏) կրիտիկական 

            արժեքները՝  

𝐏(𝑫𝒏 = 𝐬𝐮𝐩
𝒙∈𝓡

|𝐅𝒏(𝒙) − 𝐅(𝒙)| ≥ 𝒅𝜶(𝒏)) = 𝜶, 𝟎 < 𝜶 < 𝟏: 

   𝜶   0.20      0.10        0.05       0.02       0.01          𝜶    0.20      0.10       0.05       0.02       0.01                                                                             
𝒏                                                                            𝒏 
1    0.9000   0.9500   0.9750   0.9900   0.9950    31     0.1873   0.2141   0.2379   0.2660   0.2853 

2       .6838     .7764     .8419     .9000     .9293    32       .1845      .2109     .2342     .2619     .2809 

3       .5648     .6360     .7076     .7846     .8290    33       .1817      .2077     .2308     .2580     .2768 

4       .4927     .5652     .6239     .6889     .7342    34       .1791      .2047     .2274     .2543     .2728 

5       .4470     .5095     .5633     .6272     .6685    35       .1766      .2019     .2243     .2507     .2690 

6       .4104     .4680     .5193     .5774     .6166    36       .1742      .1991     .2212     .2473     .2653 

7       .3815     .4361     .4834     .5384     .5758    37       .1719      .1965     .2183     .2440     .2618 

8       .3583     .4096     .4543     .5065     .5418    38       .1697      .1939     .2154     .2409     .2584 

9       .3391     .3875     .4300     .4796     .5133    39       .1675      .1915     .2127     .2379     .2552             

10     .3226     .3687     .4093     .4566     .4889    40       .1655      .1891     .2101     .2349     .2521 

11     .3083     .3524     .3912     .4367     .4677    41       .1635      .1869     .2076     .2321     .2490 

12     .2958     .3382     .3754     .4192     .4491    42       .1616      .1847     .2052     .2294     .2461 

13     .2847     .3255     .3614     .4036     .4325    43       .1597      .1826     .2028     .2268     .2433 

14     .2748     .3142     .3489     .3897     .4176    44       .1580      .1805     .2006     .2243     .2406 

15     .2659     .3040     .3376     .3771     .4042    45       .1562      .1786     .1984     .2218     .2380 

16     .2578     .2947     .3273     .3657     .3920    46       .1546      .1767     .1963     .2194     .2354 

17     .2504     .2863     .3180     .3553     .3809    47       .1530      .1748     .1942     .2172     .2330 

18     .2436     .2785     .3094     .3457     .3706    48       .1514      .1730     .1922     .2149     .2306 

19     .2374     .2714     .3014     .3369     .3612    49       .1499      .1713     .1903     .2128     .2283 

20     .2316     .2647     .2941     .3287     .3524    50       .1484      .1696     .1884     .2107     .2260 

21     .2262     .2586     .2872     .3210     .3443    51       .1470      .1680     .1866     .2086     .2239 

22     .2212     .2528     .2809     .3139     .3367    52       .1456      .1664     .1848     .2067     .2217 

23     .2165     .2475     .2749     .3073     .3295    53       .1442      .1648     .1831     .2048     .2197 

24     .2121     .2424     .2693     .3010     .3229    54       .1429      .1633     .1814     .2029     .2177 

25     .2079     .2377     .2640     .2952     .3166    55       .1416      .1619     .1798     .2011     .2157 

26     .2040     .2332     .2591     .2896     .3106    56       .1404      .1604     .1782     .1993     .2138 

27     .2003     .2290     .2544     .2844     .3050    57       .1392      .1591     .1767     .1976     .2120 

28     .1968     .2250     .2499     .2794     .2997    58       .1380      .1577     .1752     .1959     .2102 

29     .1935     .2212     .2457     .2747     .2947    59       .1369      .1564     .1737     .1943     .2084 

30     .1903     .2176     .2417     .2702     .2899    60       .1357      .1551     .1723     .1927     .2067    
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Ա 12.  Կոլմոգորովի  բաշխում:  𝒅𝜶(𝒏)  կրիտիկական  

            արժեքները (շարունակություն) 

   𝜶   0.20       0.10       0.05       0.02      0.01           𝜶    0.20       0.10       0.05       0.02       0.01                                                                             
𝒏                                                                              𝒏 
61   0.1346   0.1539   0.1709   0.1911   0.2051     81    0.1172   0.1339   0.1487   0.1663   0.1784 

62     .1336     .1526     .1696     .1896     .2034     82       .1165     .1331     .1478     .1653     .1773 

63     .1325     .1514     .1682     .1881     .2018     83       .1158     .1323     .1469     .1643     .1763 

64     .1315     .1503     .1669     .1867     .2003     84       .1151     .1315     .1461     .1633     .1752 

65     .1305     .1491     .1657     .1853     .1988     85       .1144     .1307     .1452     .1624     .1742 

66     .1295     .1480     .1644     .1839     .1973     86       .1138     .1300     .1444     .1614     .1732 

67     .1286     .1469     .1632     .1825     .1958     87       .1131     .1292     .1436     .1605     .1722 

68     .1277     .1459     .1620     .1812     .1944     88       .1125     .1285     .1427     .1596     .1713 

69     .1268     .1448     .1609     .1799     .1930     89       .1119     .1278     .1420     .1587     .1703 

70     .1259     .1438     .1598     .1786     .1917     90       .1113     .1271     .1412     .1579     .1694 

71     .1250     .1428     .1586     .1774     .1903     91       .1106     .1264     .1404     .1570     .1685 

72     .1241     .1418     .1576     .1762     .1890     92       .1101     .1257     .1397     .1562     .1676 

73     .1233     .1409     .1565     .1750     .1878     93       .1095     .1251     .1389     .1553     .1667 

74     .1225     .1399     .1554     .1738     .1865     94       .1089     .1244     .1382     .1545     .1658 

75     .1217     .1390     .1544     .1727     .1853     95       .1083     .1238     .1375     .1537     .1649 

76     .1209     .1381     .1534     .1716     .1841     96       .1078     .1231     .1368     .1529     .1641 

77     .1201     .1372     .1524     .1705     .1829     97       .1072     .1225     .1361     .1521     .1632 

78     .1194     .1364     .1515     .1694     .1817     98       .1067     .1219     .1354     .1514     .1624 

79     .1186     .1355     .1505     .1683     .1806     99       .1062     .1213     .1347     .1506     .1616 

80     .1179     .1347     .1496     .1673     .1795    100      .1056     .1207     .1340     .1499     .1608 

 

 

 

 

 

.    
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Ա 13.  Սպիռմենի  𝒓𝑺
∗  ռանգային կորելյացիայի գործակից : 

            𝒔𝜶(𝒏)  կրիտիկական արժեքները՝ 

𝐏(𝒓𝑺
∗ = 𝟏 −

𝟔

𝒏(𝒏𝟐 − 𝟏)
∙∑(𝒊 − 𝑻𝒊)

𝟐

𝒏

𝒊=𝟏

≥ 𝒔𝜶(𝒏)) = 𝜶,     𝟎 < 𝜶 < 𝟏 ∶ 

    𝜶         0.10              0.05             0.025            0.01            0.005            0.001                 
𝒏  
4              0.8000         0.8000 

5                .7000           .8000           .9000           .9000 

6                .6000           .7714           .8286           .8857           .9429 

7                .5357           .6786           .7450           .8571           .8929           .9643 

8                .5000           .6190           .7143           .8095           .8571           .9286 

9                .4667           .5833           .6833           .7667           .8167           .9000 

10              .4424           .5515           .6364           .7333           .7818           .8667 

11              .4182           .5273           .6091           .7000           .7455           .8364 

12              .3986           .4965           .5804           .6713           .7273           .8182 

13              .3791           .4780           .5549           .6429           .6978           .7912 

14              .3626           .4593           .5341           .6220           .6747           .7670 

15              .3500           .4429           .5179           .6000           .6536           .7464 

16              .3382           .4265           .5000           .5824           .6324           .7265 

17              .3260           .4118           .4853           .5637           .6152           .7083 

18              .3148           .3994           .4716           .5480           .5975           .6904 

19              .3070           .3895           .4579           .5333           .5825           .6737 

20              .2977           .3789           .4451           .5203           .5684           .6586 

21               .2909          .3688           .4351           .5078           .5545           .6455 

22               .2829          .3597           .4241           .4963           .5426           .6318 

23               .2767          .3518           .4150           .4852           .5306           .6186 

24               .2704          .3435           .4061           .4748           .5200           .6070 

25               .2646          .3362           .3977           .4654           .5100           .5962 

26               .2588          .3299           .3894           .4564           .5002           .5856 

27               .2540          .3236           .3822           .4481           .4915           .5757 

28               .2490          .3175           .3749           .4401           .4828           .5660 

29               .2443          .3113           .3685           .4320           .4744           .5567 

30               .2400          .3059           .3620           .4251           .4665           .5479      
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Ա 14.  Քենդալի  𝒓𝑲
∗  ռանգային կորելյացիայի գործակից :   

            𝒌𝜶(𝒏)  կրիտիկական արժեքները՝ 

𝐏(𝒓𝑲
∗ = 𝟏 −

𝟒𝑸

𝒏(𝒏 − 𝟏)
≥ 𝒌𝜶(𝒏)) = 𝜶,     𝟎 < 𝜶 < 𝟏 ∶ 

    𝜶         0.05             0.025             0.01            0.005             

 𝒏  

 4               1.000           1.000            1.000           1.000  

 5                 .800           1.000            1.000           1.000 

 6                .733              .867              .867           1.000            

 7                .619              .714              .810             .905                       

 8                .571              .643              .714             .786                       

 9                .500              .556              .667             .722                       

10               .467              .551              .600             .644       
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Համառոտագրություններ 

 

ԿՍԹ − կենտրոնական սահմանային թեորեմ 

ՃՄ գնահատական – ճշմարտանմանության մաքսիմումի գնահատական 

ՆՔ գնահատական − նվազագույն քառակուսիների գնահատական 

ՀԱՀ հայտանիշ − հավասարաչափ առավել հզոր հայտանիշ 

ՃՀՀ − ճշմարտանմանության հարաբերության հայտանիշ 

ANOVA (Analysis of Variance) – ցրվածքների վերլուծություն 

ESS (Error Sum of Squares) – մնացորդների քառակուսիների գումար 

FGLS (Feasible Generalised Least Squares) Estimator – հասանելի 

ընդհանրացված նվազագույն քառակուսիների գնահատական 

GLS Estimator – ընդհանրացված նվազագույն քառակուսիների 

գնահատական 

LM (Lagrange Multiplier) test − Լագրանժի բազմապատկիչների հայտանիշ 

LR (Likelihood Ratio) test − ճշմարտանմանության հարաբերության 

հայտանիշ 

MSE (Mean Square Error) − միջին քառակուսային սխալ 

OLSE (Ordinary Least Squares Estimator) − սովորական նվազագույն 

քառակուսիների գնահատական  

RSS (Regression Sum of Squares) – ռեգրեսիայով բացատրվող 

քառակուսիների գումար 

TSS (Total Sum of Squares) − լրիվ քառակուսիների գումար 

W (Wald) test − Վալդի հայտանիշ 
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Նշաններ 

 

⇔ − համարժեքություն 

⇒ − «հետևում է» 
P
→ − զուգամիտություն ըստ P հավանականութան 
𝑑
→ − ըստ բաշխման զուգամիտություն 

↝ − «մոտարկվող» (մեծ 𝑛 -ի դեպքում) բաշխում 

∎ − ապացույցի վերջ 
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Ընդհանուր մաթեմատիկական որոշ նշանակումներ 

 
𝒩 −  բնական թվերի բազմություն  

ℛ  −  իրական թվերի բազմություն 

ℛ𝑚 −  𝑚 - չափանի էվկլիդեսյան տարածություն 

P  −  հավանականություն (բաշխում) 

F(𝑥)  −  բաշխման ֆունկցիա 

𝑓(𝑥)  −  բացարձակ անընդհատ  𝑋  պատահական մեծության խտության ֆունկցիա 

𝑝(𝑥)  −  դիսկրետ  𝑋  պատահական մեծության բաշխման օրենք  (𝑝(𝑥) = P(𝑋 = 𝑥))   

𝜑𝐗(𝐭) −   X  պատահական վեկտորի բնութագրիչ ֆունկցիա  

𝑀𝐗(𝐭) −  X   պատահական վեկտորի մոմենտների ծնորդ ֆունկցիա 

𝑚 = E(𝑋)  −   𝑋  պատահական մեծության մաթեմատիկական սպասում (միջին)  

𝜎2 = var (𝑋)  −   𝑋  պատահական մեծության ցրվածք (դիսպերսիա) 

𝜎 −  𝑋  պատահական մեծության միջին քառակուսային (ստանդարտ) շեղում  

cov (𝑋, 𝑌) −  𝑋  և  𝑌  պատահական մեծությունների կովարիացիա 

𝜌𝑋𝑌  −  𝑋  և  𝑌   պատահական մեծությունների կորելյացիայի գործակից  

⅀ = 𝕍(𝐗)  −  𝐗  պատահական վեկտորի կովարիացիոն մատրից 

𝕍(𝐗, 𝐘) −  𝐗  և  𝐘  պատահական վեկտորների համատեղ կովարիացիոն մատրից 

E(𝕏)  −  𝕏  պատահական մատրիցի մաթեմատիկական սպասում  (միջին)  

E(𝕐|𝕏) −  𝕐  պատահական մատրիցի ըստ 𝕏 պատահական մատրիցի պայմանական 

մաթեմատիկական սպասում 

𝕍{𝐘|𝕏} −  Y  պատահական վեկտորի ըստ  𝕏  պատահական մատրիցի պայմանական 

կովարիացիոն մատրից 

𝜁𝛼 −  𝑋  պատահական մեծության  𝛼  մակարդակով քանորդիչ (քվանտիլ) 

𝑧𝛼 −  ստանդարտ նորմալ  (ℕ(0,1)) բաշխման  𝛼  մակարդակով կրիտիկական  արժեք   

𝜒𝛼
2(𝑛) −  𝒏  ազատության աստիճաններով   𝝌𝟐  բաշխման  (ℍ𝟐(𝒏))   𝛼   մակարդակով 

կրիտիկական արժեք  

𝑡𝛼(𝑛) − 𝒏   ազատության աստիճաններով   Ստյուդենտի (t −)    բաշխման   (𝕋(𝒏))   𝛼 

մակարդակով  կրիտիկական արժեք 

𝑆𝛼(𝑛,𝑚) −  𝒏  և  𝒎 ազատության աստիճաններով Ֆիշեր – Սնեդեկորի (F −) բաշխման 

(𝕊(𝒏,𝒎))  𝜶  մակարդակով  կրիտիկական արժեք 

sup 𝐵  −  𝐵 ⊂ ℛ  բազմության վերին եզր 

[𝑥]  −   𝑥 ∈ ℛ  թվի ամբողջ մաս 

|𝑥|  −   𝑥 ∈ ℛ  թվի մոդուլ 

𝐗  = (𝑋1, … , 𝑋𝑛)  − 𝒏  ծավալի պատահական նմուշ 

𝐱  = (𝑥1, …, 𝑥𝑛)  − 𝒏  ծավալի թվային նմուշ 
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𝒳 =  𝑋(Ω) −  𝑋  պատահական մեծության արժեքների բազմություն 

ℬ(𝒳)  −  𝒳 ⊂ ℛ  բազմության բորելյան բազմությունների  𝝈 – հանրահաշիվ 

𝒳𝑛 =  𝒳 ×… ×  𝒳⏟        
𝑛

  −  𝒳 բազմությունների դեկարտյան արտադրյալ 

𝒫 = {P}  −  թույլատրելի  բաշխումների դաս  

(𝒳𝑛, ℬ(𝒳𝑛), 𝒫 )  −  նմուշային տարածություն   

  𝐗̅ =
1

𝑛
∑ 𝑋𝑖

𝑛

𝑖=1  

,   𝐱̅ =
1

𝑛
∑𝑥𝑖

𝑛

𝑖=1

  −   նմուշային միջին   

 𝑆2(𝑆𝑋
2) =   

1

𝑛
∑(𝑋𝑖 −  𝐗)

𝟐 −   նմուշային ցրվածք (դիսպերսիա)

𝒏

𝒊=𝟏

 

 𝑆0
2(𝑆0𝑋

2 ) =
1

𝑛 − 1
∑(𝑋𝑖 −   𝐗)

𝟐  −   անշեղ նմուշային ցրվածք (դիսպերսիա)

𝒏

𝒊=𝟏

 

 𝑆1
2(𝑆1𝑋

2 )  =  
1

𝑛
∑(𝑋𝑖 −   𝑚)

𝟐   −   նմուշային ցրվածքի արդյունավետ գնահատական

𝒏

𝒊=𝟏

 

 𝑆𝑋𝑌
2 = 

1

𝑛
∑(𝑋𝑖 −   𝐗)(𝑌𝑖 − 𝐘)

  −   նմուշային կովարիացիա

𝒏

𝒊=𝟏

 

𝑟𝑋,𝑌 =
𝑆𝑋𝑌
2

𝑆𝑋 ∙ 𝑆𝑌
−  նմուշային կորելյացիայի գործակից 

𝑆𝑋 = √𝑆𝑋
2  −  նմուշային միջին քառակուսային (ստանդարտ) շեղում 

𝔸 = ‖𝑎𝑖𝑗‖𝒊,𝒋=𝟏
𝒏,𝒎

 − 𝑛 × 𝑚 – չափանի մատրից 

𝔸 = ‖𝑎𝑖𝑗‖𝒊,𝒋=𝟏
𝒏

 − 𝑛 × 𝑛 – չափանի (քառակուսային) մատրից 

𝔼𝑛  −  𝑛 × 𝑛 – չափանի միավոր մատրից    

𝟎𝑛×𝑚 −  𝑛 ×𝑚 −չափանի  0 –ական մատրից 

Λ𝑛 = diag (𝜆1, … , 𝜆𝑛)  −  𝑛 × 𝑛 – չափանի  անկյունագծային մատրից 

𝔸𝑇 −  𝔸  մատրիցի տրանսպոնացված (շրջված) մատրից   

𝔸−1 −  𝔸   մատրիցի հակադաձ մատրից 

|𝔸| = det(𝔸) −  𝔸  մատրիցի որոշիչ (դետերմինանտ) 

 tr (𝔸)  =∑𝑎𝑖𝑖

𝑛

𝑖=1

   −     𝔸 = ‖𝑎𝑖𝑗‖𝑖,𝑗=1
𝑛

  մատրիցի հետք 

rank (𝔸) −  𝔸  մատրիցի ռանգ  

 𝐭 𝔸 𝐭𝑇  = ∑ 𝑎𝑖𝑗𝑡𝑖𝑡𝑗

𝒏

𝒊,𝒋=𝟏

 − 𝐴 = ‖𝑎𝑖𝑗‖𝑖,𝑗=1
𝑛

մատրիցին համապատասխանող քառակուսային ձև 

𝔸 > 0 (𝔸 ≥ 0) −  դրական (ոչ բացասական) որոշյալ մատրից  

Ω⊥ −  Ω ⊂ ℛ𝑛  ենթատարածության օրթոգոնալ լրացում 

ℙΩ −  Ω ⊂ ℛ𝑛  ենթատարածության վրա օրթոգոնալ պրոեկտման մատրից 
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Օգտագործվող տերմինների հայերեն-անգլերեն -

ռուսերեն բառարան 
 

անկախության հայտանիշ − test of independence − критерий независимости 

անշեղ գնահատական − unbiased estimator − несмещенная оценка 

անշեղ հայտանիշ − unbiased test − несмещенный критерий 

առավել հզոր հայտանիշ − most powerful test − наиболее мощный критерий 

առավել ճշգրիտ վստահության միջակայք − more precise confidence interval − наиболее 

точный доверительный интервал 

ասիմպտոտիկ անշեղ հայտանիշ − asymptotically unbiased test − асимптотически 

несмещенный критерий 

ասիմպտոտիկ առավել հզոր հայտանիշ − asymptotically most powerful test −  

асимптотически наиболее мощный критерий 

ասիմպտոտիկ կրիտիկական արժեք − asymptotic critical value −  

асимптотически критическое значение 

ասիմպտոտիկ հայտանիշ − asymptotic test − асимптотический критерий 

ասիմպտոտիկ նշանակալիության մակարդակ − asymptotic significance level −  

асимптотический уровень значимости 

ասիմպտոտիկ օպտիմալ հայտանիշ − asymptotically optimal test – асимптотически 

оптимальный критерий 

ասիմպտոտիկ ոչ պարամետրական (բաշխումից ազատ) վիճականի − asymptotically 

distribution free statistic − асимптотически непараметрическая (свободная от 

распределения) статистика  

բաշխումից ազատ (ոչ պարամետրական) վիճականի − distribution free statistic −  

статистика (непараметрическая) свободная от распределения 

բարդ վարկած − composite hypothesis − сложная гипотеза 

բացատրող (անկախ) փոփոխականներ − explanatory (independent) variables −  

обьясняющие (независимые) переменные  

բացատրվող (կախյալ) փոփոխականներ կամ արձագանք − explained (dependent)  variables 

or response – обьясняемые (зависимые) переменные или отклик 

գծային ռեգրեսիայի հավասարում − linear regression equation − уравнение линейной  

регрессии  

գնահատական կետային − point estimator − точечная оценка 

գնահատական ճշմարտանմանության մաքսիմումի − maximum likelihood estimator − 

оценка максимального правдоподобия 

գնահատական միջակայքային − interval estimator − интервальная оценка 

գնահատական նվազագույն քառակուսիների − least square estimator − оценка наименьших 

квадратов 
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դետերմինացիայի գործակից − coefficient of determination − коэффициент 

детерминации  

դետերմինացիայի գործակից «ճշգրտված» − «adjusted» coefficient of determination −  

«исправленный» коэффициент детерминации  

երկընտրանքային վարկած − alternative hypothesis − альтернативная гипотеза 

զուգակցության աղյուսակ − contingency table − таблица сопряженности 

էքսպոնենտական (ցուցչային) դաս − exponential family − экспоненциальный класс 

լոգարիթմական ճշմարտանմանության ֆունկցիա − logarithmic likelihood function − 

логарифмическая функция правдоподобия  

Կոլմոգորովի հայտանիշ − Kolmogorov`s test − критерий Колмогорова 

Կոլմոգորովի վիճականի − Kolmogorov`s statistic − статистика Колмогорова 

հայտանիշ − test – критерий 

համասեռության հայտանիշ − test for homogeneity − критерий однородности 

հայտանիշի հզորություն − power of a test − мощность критерия 

հայտանիշի վիճականի − test statistic − статистика критерия 

հասանելի նշանակալիության մակարդակ ( P - արժեք) − P - value (P-V) − достижимый 

уровень значимости ( P - значение)  

հավասարաչափ առավել հզոր հայտանիշ − uniformly most powerful test −  

 равномерно наиболее мощный критерий 

ճշմարտանմանության հարաբերություն − likelihood ratio − отношение 

 правдоподобия 

ճշմարտանմանության հարաբերության հայտանիշ − likelihood ratio test −  критерий 

отношения правдоподобия 

ճշմարտանմանության հարաբերության վիճականի − likelihood ratio statistic − статистика 

отношения правдоподобия 

ճշմարտանմանության հարաբերության ֆունկցիա − likelihood ratio function −  функция 

отношения правдоподобия  

Ման – Ուիտնիի հայտանիշ − Mann – Whitney test − критерий Мана – Уитни 

Ման – Ուիտնիի վիճականի − Mann – Whitney statistic − статистика Мана - Уитни  

մատրից չվերասերված − nondegenerate matrix − невырожденная матрица 

- իդեմպոտենտ − idempotent matrix − идемпотентная матрица 

- հակադարձ − inverse matrix − обратная матрица 

- համաչափ − symmetric matrix − симметричная матрица 

- պատահական - random matrix - случайная матрица 

- պրոեկցիոն − proective matrix − проекционная матрица 

- վերասերված − degenerate matrix − вырожденная матрица 

- տրանսպոնացված (շրջված) − transpose matrix − транспонированная матрица 

- օրթոգոնալ − orthogonal matrix − ортогональная матрица 
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մատրիցի հետք − trace of matrix − след матрицы 

- որոշիչ (դետերմինանտ) − determinant of matrix − детерминант матрицы 

- ռանգ − rank of matrix − ранг матрицы 

- սեփական արժեք − eigenvalue of matrix − собственное значение матрицы 

միագործոն ցրվածքային վերլուծություն – one – way ANOVA – однофакторный 

дисперсионный анализ 

միակողմանի բարդ վարկածների ստուգում − one – tailed composite hypothesis testing − 

проверка односторонних сложхых гипотез 

միակողմանի երկընտրանքային վարկած − one – tailed alternative hypothesis −  

односторонняя альтернативная гипотеза 

միակողմանի վարկած − one – tailed hypothesis − односторонняя гипотеза  

միջակայքային կանխատեսում − interval forecasting − интервальное предсказание 

մնացորդային անդամ − residual term − остаточный член 

մնացորդային ցրվածք − residual variance − остаточная дисперсия 

մնացորդների քառակուսիների գումար − error sum of squares (ESS) – сумма квадратов 

остатков 

մոմենտների ծնորդ ֆունկցիա - moment generating function – производящая функция 

моментов 

մոնոտոն ճշմարտանմանության հարաբերությունով բաշխումներ – distributions  with 

monotone likelihood ratio − распределения с монотонным отношением  правдоподобия  

Նեյման – Պիրսոնի (ճշմարտանմանության հարաբերության) ֆունդամենտալ լեմմա − 

Neyman – Pearson`s (the likelihood ratio) fundamental lemma − фундаментальная лемма 

(отношения правдоподобия) Неймана – Пирсона  

նշանակալի կորելյացիոն կապ − significance correlation connection – значимая  

корреляционная связь 

նշանակալիության մակարդակ − significance level − уровень значимости 

նվազագույն քառակուսիների մեթոդ- least square method–метод наименьших квадратов  

ոչ պարամետրական վարկած − nonparametric hypothesis − непараметрическая гипотеза 

ոչ պարամետրական (բաշխումից ազատ) վիճականի − distribution free statistic −  

непараметрическая (свободная от распределения) статистика 

պարամետրական բաշխումների դաս − parametric family of distributions −  

 параметрическое семейство распределений  

պարամետրական վարկած − parametric hypothesis − параметрическая гипотеза 

պատահական վեկտորի պայմանական կովարիացիոն մատրից - conditional covariation 

matrix of random vector - условная ковариационная матрица случайного вектора  

պատահական վեկտորի կովարիացիոն մատրից - covariation matrix of random vector - 

ковариационная матрица случайного вектора  
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պատահական մատրիցի պայմանական մաթեմատիկական սպասում – conditional 

mathematical expectation of random matrix - условное математическое ожидание 

случайной матрицы 

Պիրսոնի 𝝌𝟐 - հայտանիշ − Pearson`s 𝜒2 – test − 𝜒2 – критерий Пирсона 

Պիրսոնի 𝝌𝟐 - վիճականի − Pearson`s 𝜒2 – statistic − 𝜒2 – статистика Пирсона 

ռանգ − rank – ранг 

ռանգային հայտանիշներ − rank tests − ранговые критерии 

ռեգրեսիա զույգային − binary regression − парная регрессия 

ռեգրեսիայի մնացորդ − regression residual − остаток регрессии 

ռեգրեսիայի սխալ − regression error − ошибка регрессии 

ռեգրեսիոն մոդել − regression model − регрессионная модель 

ռեգուլյարության պայմաններ − regularity conditions − условия регулярности 

սխալներ I և II սեռի − I – st and II - nd kind errors − ошибки I и II рода 

Սմիռնովի վիճականի − Smirnov`s statistic − статистика Смирнова 

Ստյուդենտի վիճականի − Student`s statistic − статистика Стьюдента 

Ստյուդենտի (𝒕 −) բաշխում − Student`s (𝑡 −) distribution − 𝑡 − распределение Стьюдента 

Սպիռմենի ռանգային հայտանիշ − Spearmen`s rank test − ранговый критерий Спирмена 

Սպիռմենի ռանգային կորելյացիայի գործակից − Spearmen`s rank correlation  coefficient 

(Spearmen`s 𝜚 − coefficient) - коэффициент ранговой корреляции Спирмена 

վարիացիոն (փոփոխականության) շարք − variation series − вариационный ряд 

վարկած − hypothesis – гипотеза 

վիճակագրություն − statistics − статистика (как предмет) 

վիճականի − statistic − статистика (как функция) 

վիճականի կարգային − rank statistic − порядковая статистика 

վիճականի կենտրոնական − central statistic − центральная статистика 

վստահության մակարդակ − confidence level − доверительный уровень 

վստահության միջակայք − confidence interval − доверительный интервал 

«ցողուն և տերևներ» ներկայացում − «steam and life» representation – представление 

«стебель и листья» 

ցրվածք (դիսպերսիա) − variation – дисперсия 

ցրվածքային վերլուծություն − analysis of variation (𝐴𝑁𝑂𝑉𝐴) − дисперсионный анализ 

Ուիլկոկսոնի ռանգային հայտանիշ − Wilcoxon`s rank test − ранговый критерий 

Уилкоксона 

Ուիլկոկսոնի վիճականի − Wilcoxon`s statistic − статистика Уилкоксона 

ունակ գնահատական − consistent estimator − состоятельная оценка 

ունակ հայտանիշ − consistent test − состоятельный критерий 

Քենդալի ռանգային հայտանիշ − Kendall`s rank test − ранговый критерий Кендалла 

Քենդալի Q – վիճականի − Kendall`s Q – statistic − Q – статистика Кендалла 
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Քենդալի ռանգային կորելյացիայի գործակից − Kendall`s rank correlation coefficient 

(Kendall`s 𝜏 coefficient) - коэффициент ранговой корреляции Кендалла 

օպտիմալ գնահատական − optimal estimator − оптимальная оценка 

Ֆիշերի բաշխում − Fisher`s distribution − распределение Фишера 

Ֆիշերի z – ձևափոխություն − Fisher`s z – transformation − z – преобразование Фишера 

Ֆիշեր – Սնեդեկորի ( F −) բաշխում − Fisher – Snedekor`s F − distribution − F − 

распределение Фишера – Снедекора 

Ֆիշերի տեղեկատվական մատրից – Fisher`s information matrix – информационная 

матрица Фишера 
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Դասագրքի I-ին մասում հայտնաբերված 

վրիպակներ 

 

1. Էջ 17 :  

Սահմանում 1.6 - ում բերված է՝ 

… հաշվելի կետերի  𝒳𝜃 = {𝑥𝑘}𝑘≥1 ≡ {𝑥1, 𝑥2 , . . . } ⊂ ℝm բազմություն … :  

Պետք է լինի՝ 

… հաշվելի կետերի  𝒳 = {𝑥𝑘}𝑘≥1 ∶= {𝑥1, 𝑥2 , . . . } ⊂ ℝm բազմություն … : 

2. Էջ 22 : 

Սահմանում 1.17 - ում բերված են՝  𝑝(𝑥𝑖0) ≥ 𝑝(𝑥𝑖0−1)  և  𝑝(𝑥𝑖0) ≥ 𝑝(𝑥𝑖0+1) 

անհավասարությունները: 

Պետք է լինի՝  𝑝(𝑥𝑖0) > 𝑝(𝑥𝑖0−1)  և  𝑝(𝑥𝑖0) > 𝑝(𝑥𝑖0+1): 

𝟑. Էջ 56 : 

Սահմանում 4.5 -ից հետո պետք է ավելացվի՝ 

Հետագայում  կենթադրվի, որ  Θ  պարամետրական  բազմության  և  𝒫(𝜃) 

բաշխումների դասի միջև տեղի ունի փոխմիարժեք համապատասխանու-

թյուն՝  ℙ𝜃 : Θ ⇔  𝒫(𝜃) ( 𝜃1 ≠ 𝜃2 ∈ Θ ⇔ ℙ𝜃1 ≠ ℙ𝜃2): 

 4. Էջ 72 :  

Սահմանում 4.26 -ում բերված է՝ 

𝔽𝑛
∗ (𝑥)  =  

1

𝑛
 ∑(∑𝜈𝑖

∗

𝑘

𝑖=1

)𝟙∆𝑘(𝑥)  + 𝟙(𝑏𝑟+1 ,+∞)(𝑥),

𝑟

𝑘=1

  𝑥 ∈ ℝ 

բանաձևը: 

Պետք է լինի՝  

𝔽𝑛
∗ (𝑥)  =

{
 
 

 
 1

𝑛
 ∑(∑𝜈𝑖

∗

𝑘

𝑖=1

)𝟙(𝑥𝑘
0, 𝑥𝑘+1

0 ](𝑥),   եթե 𝑥 ≤ 𝑥𝑟
0 

𝑟−1

𝑘=1

1,   եթե 𝑥 > 𝑥𝑟
0 ,
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որտեղ  𝒙𝒌
𝒐 =

𝟏

𝟐
(𝒃𝒌 + 𝒃𝒌+𝟏) -ն  ∆𝒌= (𝒃𝒌,  𝒃𝒌+𝟏] միջակայքի միջնակետն է: 

Սահմանում 4.27 -ում բերված է՝ 
 

𝔽𝑛(𝑥) = ∑𝜔𝑘𝟙∆𝑘(𝑥) + 𝟙(𝑏𝑟+1 ,+∞)(𝑥),

𝑟

𝑘=1

  𝑥 ∈ ℝ , 

բանաձևը:  

Պետք է լինի՝   𝔽𝑛(𝑥) = {
∑𝜔𝑘𝟙(𝑥𝑘

0, 𝑥𝑘+1
0 ](𝑥),   եթե 𝑥 ≤ 𝑥𝑟

0 

𝑟−1

𝑘=1

1,   եթե 𝑥 > 𝑥𝑟
0 ∶

  

 

Սահմանում 4.28 -ում բերված է՝ 
 

𝔽̂𝑛(𝑥) =
1

𝑛
 ∑ [∑  𝜈𝑖  + 

𝜈𝑘
ℎ𝑘
(𝑥 − 𝑏𝑘) 

𝑘−1

𝑖=1

] 𝟙∆𝑘(𝑥) + 𝟙(𝑏𝑟+1 ,+∞)(𝑥),

𝑟

𝑘=1

  𝑥 ∈ ℝ  

բանաձևը: 

Պետք է լինի՝  

𝔽̂𝑛(𝑥) = {

1

𝑛
 ∑ [∑  𝜈𝑖  +  

𝜈𝑘
ℎ𝑘
(𝑥 − 𝑏𝑘) 

𝑘−1

𝑖=1

] 𝟙∆𝑘(𝑥),   եթե 𝑥 ≤ 𝑏𝑟+1 

𝑟

𝑘=1

1,   եթե 𝑥 > 𝑏𝑟+1 ∶ 

 

 

𝔽𝒏(𝒙) և 𝔽̂𝒏(𝒙) ֆունկցիաների գծապատկերը պետք է լինի՝ 

 

 

 

 

 

 

 

 

 

 

𝐹̂𝑛(𝑥) 

1 

0 𝑥 𝑏𝑘  𝑏𝑘+1  𝑏𝑟   

𝑓2  
𝑓1  

𝑓𝑘  

𝑥2
0 𝑏1  𝑏2  𝑥1

0 𝑏3  𝑥𝑘
0 𝑥𝑟

0 

𝑓𝑟  

𝐹𝑛(𝑥) 

𝑏𝑟+1  

𝐹𝑛(𝑥) 

𝐹̂𝑛(𝑥) 
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5.Էջ 87 : 

Օրինակ 4.46 -ի դ) կետում բերված է  𝔽𝑛(𝑥) նմուշային 

միջակայքային բաշխման ֆունկցիայի հետևյալ բանաձևը՝ 

𝔽𝑛(𝑥) = 𝜔𝑘 =
1

𝑛
 ∑𝜈𝑖

𝑘

𝑖=1

, 𝑘 = 0,… , 6, 𝑥 ∈ (𝑏𝑘 , 𝑏𝑘+1], 𝑏0 = −∞,  

 

 𝑏7 = +∞ (𝜔0 = 0, 𝜈6 = 0) 

 

(𝑏𝑘 , 𝑏𝑘+1] (−∞, 3] (3, 5.5] (5.5, 8] (8, 10.5] (10.5, 13] (13, +∞) 

𝔽𝑛(𝑥) 0 0.3 0.55 0.75 0.85 1 

Պետք է լինի՝  

𝔽𝑛(𝑥) = 𝜔𝑘 =
1

𝑛
 ∑𝜈𝑖

𝑘

𝑖=1

,   𝑥 ∈ (𝑥𝑘
0,  𝑥𝑘+1

0 ],   𝑘 = 0,… , 5 ,  

որտեղ  𝑥𝑘
0 =

𝑏𝑘+ 𝑏𝑘+1

2
 -ն՝ ∆𝑘= (𝑏𝑘,  𝑏𝑘+1] միջակայքի միջնակետն է,  

𝑥0
0 = − ∞, 𝑥6

0 = + ∞, 𝑏0 = − ∞,  𝑏6 = + ∞ (𝜔0 = 0)   

 
(𝑥𝑘
0,  𝑥𝑘+1

0 ] (−∞,4.25] (4.25, 6.75] (6.75, 9.25] (9.25, 11.75] (11.75, 14.25] (14.25, ∞) 

𝔽𝑛(𝑥) 0 0.3 0.55 0.75 0.85 1 

 

𝔽𝒏(𝒙) և 𝔽̂𝒏(𝒙) ֆունկցիաների գծապատկերը պետք է լինի՝ 

 

 

 

 

 

 

 

  

  0 𝑥 

𝐹̂𝑛(𝑥) 

0,3 

3 5,5 

𝐹𝑛(𝑥) 

4,25 6,75 8 9,25 10,5 11,75 14,25 15,5 

0,55 

0,75 

0,85 

1 

13 

𝐹𝑛(𝑥) 

𝐹̂𝑛(𝑥) 
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6. Էջ 97 : 

Սահմանում 4.64 -ում բերված է  𝜁𝑝
∗  նմուշային  𝑝 -քանորդիչի հետևյալ 

ներկայացումը՝ 

𝜁𝑝
∗ ≡ 𝜁𝑝

∗(𝑛) = {
𝑋([𝑛𝑝] + 1) , եթե 𝑛𝑝 ∈ ℚ

𝑋(𝑛𝑝) , եթե 𝑛𝑝 ∈ ℕ 
 , 𝑝 ≠ 1 2⁄ ∶ 

Պետք է լինի՝  

  𝜁𝑝
∗ ∶= 𝜁𝑝

∗(𝑛) = 𝑋([𝑛𝑝] + 1), 𝑛 ∈ ℕ, 𝑝 ≠ 1 2⁄ ∶  

 

7. Էջեր 221 - 240 : Խնդիրներ` 7.29, 7.32, 7.49, 7.58 և Օրինակներ` 7.47, 7.48 

– ում բերված են` Պատասխաններ` (−∞, 𝑎), պետք է լինի՝ (0, 𝑎):  

 

Հղումներ՝ 

1.  Էջեր 15, 16, 18:  

Բերված է` [36], պետք է լինի` [34]:  

2.  Էջ 28 :  

Բերված է՝ [28], պետք է լինի` [26]:  

3.  Էջ 29 : 

Բերված է՝ [29], պետք է լինի`[27],  

բերված է՝ [8], պետք է լինի` [6],  

բերված է՝ [36], պետք է լինի` [34]:  

4.  Էջ 30 : 

Բերված է՝ [29], պետք է լինի` [27]: 

5.  Էջեր 56, 75, 83 : 

Բերված է՝ [36], պետք է լինի` [34]:  

6.  Էջ 68 :  

Բերված է՝ [43], պետք է լինի` [41]:  

7.  Էջեր 104, 110, 112, 113, 114, 115 : 

Բերված է՝ [25], պետք է լինի` [23]:  

8.  Էջ 197 :  

Բերված է՝ [27], պետք է լինի` [25]:  

9.  Էջ 225 :  

Բերված է՝ [29], պետք է լինի` [27]:  
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SUMMARY 

 

 

Foundations of Theoretic and Applied Statistics 

 

Part 2 

K. V. Gasparyan 

 

The second part of the textbook focuses on the theory of parametric and non-

parametric statistical hypotheses, as well as pairwise and multivariate linear 

regression analysis. The included theoretical material is accompanied by examples 

and problems related to each topic. 

The textbook is intended for undergraduate and graduate students of the 

faculties of mathematics and mechanics (including actuarial and financial 

mathematics), informatics and applied mathematics. It can also be useful for 

students of YSU Faculty of Economics and Management and all those specialists 

who want to use advanced statistical methods in their research. 
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РЕЗЮМЕ 

 

Основы теоретической и прикладной статистики 

 

Часть 2 

К. B. Гаспарян 

 

Вторая часть учебника посвящена теории параметрических и непара-

метрических статистических гипотез и вопросам парного и многомерного 

линейного регрессионного анализа. Включенный теоретический материал 

сопровождается примерами и задачами по каждой теме. 

Учебник предназначен для студентов и аспирантов факультетов матема-

тики и механики (в том числе актуарной и финансовой математики), 

информатики и прикладной математики. Он также может быть полезен 

студентам факультета экономики и управления ЕГУ и всем тем специа-

листам, которые стремятся использовать в своих исследованиях современные 

статистические методы. 
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ԿԱՐԵՆ ՎԱՀԱՆԻ ԳԱՍՊԱՐՅԱՆ 
 

 

ՏԵՍԱԿԱՆ  

ԵՎ ԿԻՐԱՌԱԿԱՆ 

ՎԻՃԱԿԱԳՐՈՒԹՅԱՆ 

ՀԻՄՈՒՆՔՆԵՐ 

 
Մաս 2 

 Վիճակագրական վարկածների ստուգում: 

Գծային ռեգրեսիա 

 

Համակարգչային ձևավորումը՝ Կ. Չալաբյանի  

Կազմի ձևավորումը՝ Ա. Պատվականյանի  

Հրատ. խմբագրումը՝ Լ. Ավետիսյանի 

 

Հեղինակը հաստատում է, որ ծանոթ է «ԵՊՀ գրահրատարակչական քա-

ղաքականությանը», և գրքում առկա փաստերը, դիրքորոշումները, կարծիք-

ները շարադրված են հեղինակային իրավունքի և էթիկայի միջազգայնորեն 

ընդունված սկզբունքների պահպանմամբ: 
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